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Real rigidities can help to generate persistent effects of monetary policy shocks. We analyse an
industry equilibrium model with two types of real rigidities: a ‘micro’ real rigidity from a kinked
demand curve, and a ‘macro’ real rigidity due to sticky intermediate prices. We estimate key model
parameters using micro data from the US CPI, which features big movements in relative prices within
and across sectors. The micro real rigidity necessitates large idiosyncratic shocks to productivity. The
macro real rigidity does not entail such large idiosyncratic shocks, and is consistent with the volatility
of sectoral TFP growth.

INTRODUCTION

Many studies estimate that monetary policy shocks have persistent effects on real output
—effects lasting well beyond a year.! In terms of microfoundations, one way of obtaining
real effects of nominal shocks is, of course, nominal price rigidity. In quantitative
treatments, however, the real effects of nominal price stickiness do not last much longer
than the average duration of a price.> The recent micro empirical literature, meanwhile,
finds that nominal prices typically change at least once per year.’

Combining the micro evidence and quantitative theory, nominal rigidities by
themselves appear unable to generate the persistent non-neutrality seen in the aggregate
data. This failure has rekindled interest in combining nominal rigidities with ‘real
rigidities’, that is, ingredients that makes firms reluctant to change their prices by big
amounts even conditional on changing their prices. Ball and Romer (1990) emphasize the
need for such real rigidities on top of nominal rigidities, and separate ‘micro’ real
rigidities from ‘macro’ real rigidities. Micro real rigidities include the Kimball (1995)
kinked demand curve (see the survey by Gopinath and Itskhoki (2011) for uses of it) and
firm-specific inputs suggested by Rotemberg (1996).* Examples of macro real rigidities
are sticky intermediate prices as in Basu (1995), and real wage rigidities modelled by
Blanchard and Gali' (2007) and many others.

The critical distinction between micro and macro real rigidities is this: micro real
rigidities make it costly for firms to move their relative prices, whereas macro real
rigidities lend a common sticky component to costs but do not penalize firms who move
their relative prices for other reasons (such as idiosyncratic productivity).

In this paper we focus on two particular real rigidities, one micro and one macro: the
Kimball-style preferences and sticky intermediate prices. Under Kimball preferences, the
elasticity of substitution between a given variety and others is decreasing in the relative
quantity consumed of the variety. Thus sellers face a price elasticity of demand that is
increasing in their good’s relative price. In contrast to the Dixit-Stiglitz world of a
constant elasticity and a constant desired mark-up of price over marginal cost, in
Kimball’s world the desired mark-up is decreasing in one’s relative price. When a re-
pricing firm faces a higher marginal cost, say due to higher wages in the wake of
monetary stimulus, the firm will temper its price increase because of the endogenous drop
in its desired mark-up. The lack of coordination is critical in this story, as it means that a
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re-pricing seller will be raising its relative price. Each round of re-pricing is more tentative
under Kimball preferences, so it takes longer for a monetary shock to fully pass through
to the average price level.

As Dotsey and King (2005) and Basu (2005) discuss, Kimball’s specification creates a
smoothed version of a ‘kink’ in the demand curve facing a given firm. Consumers flee
from individual items with high relative prices, but do not flock to individual items with
low relative prices. The result is that profits decline more steeply around a relative price
of one. This is what creates ‘rigidity’ in the relative price that a firm wants. Kimball’s real
rigidity has become a workhorse ingredient to generate persistent real effects of nominal
shocks.’

Sticky intermediate prices are comparatively straightforward. Intermediate inputs
(materials, fuel and services) are important to virtually every industry, and their prices
are sticky.® As shown by Basu (1995), sticky intermediate prices slow down the pass-
through of nominal shocks into aggregate prices. Price setters see their input costs
respond slowly, so that it requires more rounds of price setting to fully adjust to a
monetary impulse. Cagliarini et al. (2011) demonstrate that sticky intermediate prices
can reduce the reliance of dynamic stochastic general equilibrium models on (unrealistic)
price indexation. Nakamura and Steinsson (2010) show that, when combined with sticky
intermediate prices, heterogeneity of price-setting across sectors can serve as a powerful
real rigidity; the more flexible sectors effectively wait for the stickier sectors.

We investigate the compatibility of Kimball’s real rigidity and Basu’s sticky
intermediate prices with patterns of nominal and relative price changes in the microdata
collected by the US Bureau of Labor Statistics (BLS) for the Consumer Price Index
(CPI). In these data, nominal price changes are much larger than needed to keep up with
overall inflation, as stressed by Golosov and Lucas (2007). Given little synchronization,
these large changes in nominal prices translate into big movements in relative prices,
suggesting that firms face important idiosyncratic shocks to their marginal cost and/or
desired mark-up.

Embedding Kimball’s real rigidity in an industry equilibrium model, we assess how
large the idiosyncratic shocks must be in order to rationalize the observed changes in
relative prices. Given the degree of real rigidity suggested by Kimball (1995) and used by
Eichenbaum and Fisher (2007) and Linde et al. (2015), we find that the model requires
large idiosyncratic shocks (on the order of 28% per month to item-specific productivity).
On average for a given item, the model predicts that demand is eclipsed (and production
shuts down) once every seven months.

In contrast, Basu’s sticky intermediate prices do not require such large idiosyncratic
productivity shocks and do not have extreme predictions for quantities. We find that an
intermediate share of 72% implies that price stickiness can generate highly persistent
effects on real variables at the sectoral level, while being consistent with both micro facts
on price adjustment and sectoral facts on the volatility of inflation and productivity
growth.

State-dependent pricing is a key feature of our investigation. Recent evidence for
state-dependence includes Eichenbaum et al. (2011), Gagnon et al. (2012), Campbell and
Eden (2014), and Alvarez et al. (2015). Our use of state-dependent pricing is in contrast
to much of the literature incorporating real rigidities, which has assumed exogenously
time-dependent pricing. Both types of real rigidities that we incorporate affect the
frequency, size and persistence of price changes in our analysis.

The rest of the paper is organized as follows. In Section I we write down an industry
equilibrium model that combines Kimball preferences and intermediate inputs with firm
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pricing decisions in the face of fixed menu costs. In Section II we briefly describe the CPI
microdata. In Section III we estimate the model’s parameters—in particular, the required
volatility of shocks—under different assumed levels of Kimball’s superelasticity (the
elasticity of the elasticity of demand itself) and under different shares for intermediate
goods in production. Section IV concludes.

I. MODEL

The model is a variant of the standard monopolistic competition model, and it describes
optimal pricing behaviour within a particular sector of the economy.’ To explore the role
of real rigidities, we adapt the standard model to include a flexible variety aggregator a la
Kimball (1995), and to include intermediate goods as a factor of production along with
labour.

These two additions to the standard model serve to illustrate the main channels by
which real rigidities can impact pricing dynamics. As described by Ball and Romer
(1990), real rigidities can result from two sources. ‘Micro’ real rigidities stem from a high
degree of concavity in the firm’s profit function with respect to its relative price. We use
the Kimball variety aggregator to control the concavity of the profit function. ‘Macro’
real rigidities limit the impact of sectoral and aggregate shocks on the firm’s marginal
cost. We use sticky-priced intermediate goods as a factor of production to serve this
purpose.

Consumers

A representative agent consumes goods and provides labour for production. The

economy has S sectors, with each sector containing n, producers. The representative

agent chooses consumption of goods across all sectors and all producers, {{C,;}*, le.

The agent derives utility from consumption of sectoral composite goods that are created
by the costless aggregation of goods within each sector.
Each sectoral composite good C; is created using the following Kimball preferences:

1 & n.C.;
(D S )
CHEESS (C) 7

5=

where Y(1) =1, Y > 0and Y < 0. The Kimball formulation features an elasticity of
substitution decreasing in x, the relative quantity consumed of the item. Constant
elasticity of substitution (CES) preferences, which are used in the standard model of
monopolistic competition, are nested within this specification.® More generally, C; may
be defined only implicitly by equation (1).

The representative agent chooses C,; and labour (L) to maximize utility

(e
- s
(2) U= deL,{{C.\,}'.I“ - (H (a—) ) +v-(1-1L)

i=1 =1

subject to equation (1) and the budget constraint

S Ny

> D PuCa=wL+1I,

s=1 i=1
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where o is the Cobb—Douglas preference parameter for the composite good of sector s, w
is the nominal wage rate, and IT is the agent’s profits from producers.’ The sectoral shares
sum to 1: Zle o, = 1. The assumption of costless aggregation of composite goods from
each sector provides an additional constraint relating the cost of the sectoral composite
to the cost of individual goods within that sector:

ng

PXCS = Z P‘vic‘m
i=1

where P, is the price of the sector’s composite good.

Since there is no saving in this economy, all income is spent on the purchase of goods.
Based on first-order conditions for consumption, the representative agent will spend a
constant nominal share on goods from sector s:

M
' PCT

The relative demand for good j in sector s is derived from the first-order conditions
from the consumer’s optimization problem in equation (2):

nscs' — S, - Cw
oo (FEEr ()

To simplify notation, we define

3) o(x) = (Y) ™' (x),

4 D = Sl Y/ < ;) ) .
@ pEyev(nS
Using these definitions, the relative demand function for good Cj; is expressed as

nsCSj Ps/
= — Dy .
o =o(7n)

Producers

Each firm in sector s produces a differentiated good and is monopolistically competitive.
The differentiated goods in sector s are combined into a sectoral consumption good and a
sectoral intermediate input for production of all goods in sector s.'® Firms set a price for
their good in each period and are assumed to meet all demand at that price, implying that
Y= Cy + My, where C; is the demand for the consumption good and Mj; is the
demand for the intermediate input. Given the demand function for their goods, firms set
prices to maximize profits. To implement a price change, firms must pay a labour cost ®@.
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Demand from intermediate goods producers within sector

Similar to the consumption composite good Cj, an intermediate composite good M. s will
be created in sector s for use as an intermediate input in the production process. This
good is created using the same Kimball preferences:

_HZY<nS 31> —l

where Y(1)=1,Y > 0and Y < 0.

Following a similar optimization problem as solved by the housecholds, the
intermediate goods producers will have the following relative demand function, M, for a
specific good j within sector s:

nsfjvw\] — V HZ 31 n Msz
Ms l§ s

To ease notation, define

which leads to the following demand function for M ;:

6 M, (ﬁ E) .
M\' P-V

Production of intermediate good within sector

Firms maximize profits through their choices of prices and inputs of labour and
intermediate goods. Contemporaneous profits, excluding the menu costs of any price
change, are

ﬁsi = Psi Ysi - WLsi - Ps]\/—zs,iv

where I:IX,» is the nominal profit for firm 7 in sector s, L is labour, ZT] ;i 1s the composite
good in sector s used as an intermediate input by firm i.

Goods are produced via a Cobb—Douglas production function that is constant
returns to scale in labour and intermediates:

(7) Yy = ZAGL M

Yl7

where Z, is a sectoral productivity index, 4; is an idiosyncratic productivity index, and 5
is the production elasticity for intermediates. Total output of good Yj; is the sum of
goods used for consumption Cy;, and for the sectoral intermediate input for production
M,;. The producer faces demand for Cy; and M; given by equations (5) and (6).
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Taking as given the prices of labour and the sectoral intermediate good, firms select
the mix of inputs to minimize the cost of producing Y;:
won

W=l
6 Mu=p

L

s+

Firm profits are normalized by the portion of (smoothly-growing) nominal aggregate
consumption demand going to firms in sector s per firm in the sector, where
Hsi

I =——.
¥ OCSPC/nx

Using equations (5), (6), (7) and (8) along with the assumption that the composite
consumption good and composite intermediate good, respectively, are aggregated in the
same manner (D, = E|), the normalized profit function can be expressed as

~ Y. [P, P 1 -
M= to( 20D, ) (22— () 43'¢).
Cs PS Ps 17’/’ 1*’7
1—
(= w 1 !
s PXZ;/(l—'?) ’

{, 1s the component of real marginal cost common to all firms in sector s, and it will be
endogenously determined by firms’ responses to shocks in the dynamic optimization
problem. The ratio of sector output to sector consumption, Y,/C, is determined by the
amount of intermediate goods needed for production, M, and the relationship
Y, = C,+ M . We approximate the value of intermediate production in the sector by
averaging out the idiosyncratic shocks to arrive at

~ 1—n 1—n 1
M= (5) (%) ¥
Ps 1 - n Zs

With this relationship, the sectoral output-consumption ratio is

Y, n ")
a(“(m) 43')

Menu costs

where

Firms choosing to change their price in a given period will be faced with a menu cost.
To implement a price change, a firm in sector s must hire @, units of labour at the going
wage w. Expressed relative to nominal consumption per firm in sector s, this adjustment
cost is
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Normalized profits, net of menu costs, are therefore

Y\' P\'i P\‘i l n o -1
m,=2e(2p |- — (L) 4: — ..
. Cs(p<Ps S) <Ps 1_’7(1 _77> . CS ’

Note that these normalized profits will be stationary because they involve only relative
prices and quantities, the idiosyncratic productivity process will be stationary, and the
menu cost is expressed relative to average firm revenue in the sector.

Dynamic optimization

Given the menu cost of a price change, the firm solves a dynamic optimization problem
to maximize profits. In each period, the firm decides whether or not to adjust its price. If
it decides to adjust, it pays a menu cost and resets its price. If it does not adjust, then its
nominal price remains fixed, and its relative price p,; = P;/P, decreases at the rate of
sectoral inflation. As noted, we assume that the nominal consumption of the economy,
PC, is growing at a constant rate. Sectoral inflation rates, however, will be buffeted by
shocks to the sectoral technology index Z;.

The state variables for the firm’s optimization problem are the firm’s relative price at
the end of the previous period (py;, ), the growth rate of the sectoral technology index
(gz.), the sectoral inflation rate (m,), sectoral real marginal cost ({,), the idiosyncratic
productivity index (4y;), and the information set Q used to form future expectations.

Given these state variables S = {p; 1,87, 7, {;, Ay, Q}, the firm maximizes the
value function '

©) V(S) = max(V(S), V¥(S)),

where V(S) represents the firm’s value if it changes its price, and VV“(S) represents its
value if it does not change its price. These value functions, in turn, are

Y, 1 n \ "o
Ves) :%ﬁx{i (psiDs)(psi_lTn(m> Axilé/s) _®3'+ES’S[ﬁV(S/)]}a
with
S/ = {pshngN n-,V7 Cga A;i7gl}7
and
Y, (P Psi-1 1 n\ "
yNe(s) = =2 D, — A ) + Egis[pV(S
( ) Csw(l—FTEs A) <1+ns 1_’7(1_7]) si Cs + S|S[ﬁ ( )]7
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with

S/:{lpil g7, V,A(”Q’}

The parameter £ is the discount factor.

In order to solve this optimization problem, each firm must be able to form
expectations over the state variables in the subsequent period. Based on the consumer’s
optimization problem, each sector’s nominal consumption share is constant:
o, = P,C;/PC. We assume that ¢ = | so that nominal consumption grows at the same
constant rate as nominal wages, gpc = g,,. Since all firms know this constant growth rate,
they need to compute a forecast of only one of the sectoral aggregates (inflation or real
sectoral marginal cost), and then they can back out the implied forecast of the other.
Here we will describe forecasts of inflation.

In the spirit of Krusell and Smith (1998), and similar to the pricing analysis of
Midrigan (2011), we assume that each firm forecasts next period’s inflation using the
linear forecasting rule

(10) niprl =dy + alns,t + a log Cs,t + a3gZ\,.I + gnx,ta 87[\, ~ N(0> O-%n‘\-)7

where the residual is assumed to be orthogonal to the other right-hand-side variables.
The ‘regressors’ are all state variables in firms’ information sets at time z. A firm’s
idiosyncratic shock is not included because the price setting behaviour of a single firm
should not affect the sectoral inflation rate. Because of the error term, firms are not
simply using a point forecast for next period’s inflation, but rather are taking into
account the distribution of next period’s inflation conditional on this period’s
observables.

Given their forecasts for next period’s inflation rate and the sectoral technology
shock combined with the assumption of constant growth of nominal wages, firms can
derive expectations for the sectoral real marginal cost

1-n
¢ B w 1
M\ Py 20

s,t+1
as

(1 1) log C{,Prl = 10g CS,I + (1 - n)(gPC 5 ¢+1 g/Z FER

Regarding the exogenous processes, we assume that the idiosyncratic productivity
index follows a log-normal autoregressive process:

log Ay = palog A, +eqim1, &4~ N(0,0%).

We specify a stationary process because studies such as Midrigan (2011) have
found that item relative prices within product categories exhibit mean reversion. In
contrast, sectoral prices exhibit differential trends—see Bils and Klenow (2004), for
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example. We therefore assume serial correlation of the growth rate of the sectoral
technology index, with sector-specific mean growth:

(12) 8741 = Mg, 1 Pg, 821 &g, 115 &g, ™ N(0, 0.5';\ )-

Expectations of sectoral inflation and real marginal cost

In order to compute expectations of sectoral inflation and real marginal cost, we will set
up a three-variable VAR(1) using the sectoral state variables

p
ns‘,H—] Ts.1

log éiml =Ag+ A4 |logl, | + &1
8701 871

We assume that &, is not known until after all pricing decisions are made in period ¢.
With a little manipulation, we can convert (10), (11) and (12) into the following VAR
system:

ﬂ/;,ﬂ =ay+aymy, +aylogl, +azgz  + en i,
log?,,y = (1= n)(gpy — @) — g, — (1 = maym,
+ (1= (1 =nay) log s, = (pg, + (1 =n)as)gz,,
- (1 - ’1)8n,r+1 — g+

8z,.1+1 = Hg, + Pg, 8z, + Egy i+

where
_ 'ugZ.y
ay = (1 —a)) Ty — aylog (g5 — a3 1
- pgzs
with
0-1Y\ _
log (g5 = <T>'I7<1 - ’l)l .
KIMBALL AGGREGATOR

In order to explore the role of real rigidities, we have selected a flexible function for the
aggregator Y'(x). Recall that x is the relative quantity consumed of an individual variety.
Our function is parsimoniously governed by two parameters, 0 and ¢:

Y(x)=1+ (0 1)exp (%) 0791 (r (g , %) T (g 7 xf) ) ,

where I'(,2) is the incomplete gamma function

o0
F(u,z)z/ s le5ds.
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This function is a generalization of the CES aggregator Y. In the limit as e—0, we
have Y- Y55,

The solution to the model derived above depends on the derivative and the inverse of
the derivative of Y: _

iy =gten(15). w2t = (1+en(5)

With our functional form for Y, the price elasticity of demand for a given variety can
vary with the variety’s relative price. The elasticity is

Y'(x)

0/e

0(x) = — 2 —0x/"
(‘C) XYH (X) X I
where
ng YS! Psi
= = —D
YT, (PS 5)
Recall that

ng

x n Y\ Y
b= (") 3.

i=1 Y.\‘ YS‘

In the Dixit—Stiglitz case (¢—0), the elasticity is constant and equal to 6.
This functional form also produces variation in the superelasticity, or the rate of
change of the elasticity. The superelasticity is expressed as

Y(x)  Y(x)Y"(x)
XY (x) Y (x)?

= ex /0,

gx)=1-—

where, again,

Depending on the value of ¢, the superelasticity can provide a strong incentive for a firm
to keeps its price close to the average sectoral price. Note that 6 and e are the values of
the elasticity and the superelasticity at any symmetric equilibrium, that is, whenever nY;/
Y, = 1forall i

The effects of the superelasticity on demand for a given variety are illustrated in
Figure 1. Compared to the Dixit—Stiglitz case of e = 0, the demand curve is less convex
with ¢ > 0. When ¢ = 5, the demand curve is approximately linear, and with ¢ = 10 it is
ostensibly concave. Kimball’s preferences create a smoothed version of a kinked demand
curve, although for different reasons than in the traditional use of the term (other prices
are held fixed here, so it does not hinge on asymmetric responses of competitor prices).
As a firm’s relative price rises above 1, its demand is choked off more quickly than with
CES . And as its relative price declines below 1, its demand rises less rapidly than it does
under CES. Unlike CES preferences, with concavity there is a finite ‘choke price’ at
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FIGURE 1. Demand function with real rigidities
Notes: Each line represents the contemporaneous demand function for a value of the Kimball micro real
rigidity e

which demand is zero. This will play an important role in our simulations, because it
effectively offers a firm the option of selling no output if it should so desire in the face of
comparatively low idiosyncratic productivity.

Figure 2 plots a firm’s profits as its price moves away from the symmetric point,
assuming common productivity and labour as the sole input (7 = 0). The higher the
superelasticity, the more concave the profit function. Profits decline more steeply away
from 1 because price increases are penalized by plummeting demand, and price decreases
are not rewarded by soaring demand. As in Figure 1, the prices at which demand
disappears entirely are clearly visible. The greater concavity drives home the ‘real rigidity’
induced by Kimball’s preferences. When idiosyncratic productivity shocks hit, firms will
be less aggressive in passing these marginal cost shocks on to their relative prices. And
when common sectoral shocks hit, firm price responses will not be synchronized because
of the idiosyncratic shocks. As a result, the ‘Kimball kink” will slow down the response to
common shocks as well—how much so, we will see in Section ITL.!! In the interim we will
briefly describe the solution to the model and the data used to discipline the model’s
predictions.

MODEL SOLUTION

Due to the presence of a discrete-choice decision in the optimization problem expressed
in (9), the model is solved numerically using value function iteration. In this solution, all
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FIGURE 2. Profit function.
Notes: Each line represents contemporaneous profit as a function of the relative price for a value of the
Kimball micro real rigidity e

state variables are placed on discrete grids. The bounds of the relative price state are set
wide enough to include all optimal pricing decisions, and prices are placed on the grid in
increments of 0.5%. The autoregressive process for idiosyncratic productivity is
transformed into a discrete-valued Markov chain following Tauchen (1986).'> The three-
variable VAR for sectoral inflation, the sectoral real marginal cost and the sectoral
technology growth are similarly converted into a first-order Markov chain.'® This
conversion results in a transition matrix expressing the probability of observing any
realization of future sectoral-level state variables as a function of the current state
variables.

In addition to the parameters that we will estimate, we set several parameters based
on the literature, US data or the steady-state solution of the model. The growth rate gpc
of nominal consumption for the economy is set at 0.5% per month, which reflects
average nominal personal consumption expenditures consumption growth of 6% in the
USA over 1988-2004. The monthly discount rate f is set at 0.996.

Following Willis (2000), the inflation forecasting equation in (10) is used to compute
a rational expectations equilibrium of the model. For a given specification of the
structural parameters of the model along with the inflation forecasting parameters

O = {a,,a»,a3}, the model is solved and the policy function is generated. A panel of 320
firms over 240 months is then simulated using the policy functions."
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Simulating data from the model requires an updating process to determine the
evolution of the endogenous sectoral-level state variables. For tractability, we assume
that the sectoral variable D, which is a function of relative output levels of firms within
the sector, is held constant at its average value. The steady-state value of this variable
when ¢ = 0is D, = (0 — 1)/0. More generally, Dy is concave in the dispersion of relative
output, and decreasing in ¢. Since no closed-form solution is available for D, its value is
set equal to the average value of D, computed using simulated data and equation (4).

The sectoral inflation rate and the sectoral real marginal cost (log {,) are determined
by the collective actions of firms in the simulation. When setting prices in the current
period, firms are assumed to know the current value of inflation and log{,. In the
simulation, the current period inflation rate and log{, are selected by choosing the grid
point in their respective discretized state spaces that most closely match the following two
conditions from the model:">

1 & P 1 & Py S )
= (o(Fe)) 1= (3e)

As a reminder, the first equation is the Kimball flexible variety aggregator. The second
equation is the implicit definition of D, given in (4) after substituting the demand
function given in (5).

After simulating a panel of firm—months, we evaluate the forecasting rule used to
form expectations for future inflation. Adding in the exogenous sectoral productivity
growth shock g , an OLS regression of the linear forecasting rule in (10) is executed on
the simulated data. The initial assumed values of the forecast parameters, @, are then
compared to the OLS estimates, ®,. If these values differ, then the forecast parameters
are updated based on @, and a new solution for the model is derived. This updating
process continues until a fixed point is reached. This fixed-point solution represents a
rational expectations equilibrium where the inflation forecasting rule assumed by firms
matches up with the behaviour of the simulated data.

1I. CPI DATA

In its Commodities and Services Survey, the US Bureau of Labor Statistics checks the
prices of around 85,000 items per month in order to tabulate the US CPI. An individual
item refers to a product or service with specific attributes sold by a particular outlet in a
given location. The survey covers all goods and services other than shelter, or about 70%
of the CPI based on BLS consumer expenditure weights. The CPI Research Database,
maintained by the BLS Division of Price and Index Number Research, contains all prices
in the Commodities and Services Survey from January 1988 to the present.'® We base our
statistics on data to December 2004 for the three largest areas—New York, Los Angeles
and Chicago—for which all items are surveyed every month (as opposed to bimonthly
for most items in other areas). This subsample consists of about 14,000 prices per month.

The BLS identifies each collected price as either a ‘regular’ price or a ‘sale’ price (i.e. a
temporarily low price that is labelled so in some way). Although going to and from sale
prices may require menu costs, we focus on regular prices because they exhibit smaller
relative price changes. As we will report shortly, this will be a conservative approach. We
also exclude all price changes coinciding with a change in the item surveyed, seasonal
changeovers and temporary stockouts. To minimize the importance of measurement
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error, we drop price changes that exceed ten natural log points in absolute value. These
price jumps constitute less than 0.1% of all price changes. Using a lower threshold, such
as five log points, has almost no effect on our tabulations.

In order to estimate the parameters in our model, we calculate five statistics from the
CPI data. Several of these are related to statistics calculated by Klenow and Kryvtsov
(2008) using ecarlier vintages of the CPI Research Database. Golosov and Lucas (2007)
and Nakamura and Steinsson (2010) use similar statistics for their analysis.

The first moment that we calculate is the average sectoral inflation rate over time. Let
Pg;; denote the price of item 7 in sector s in month ¢, and let w;, denote the BLS weight on
item i within category s in month . The weights in sector s sum to wj° in every month,
that is, the BLS consumption expenditure weights of category s in 1993 (which
themselves sum to 1). We define the sectoral inflation rate in month ¢ as

Wiy [log(PsiI) - log(Pxilfl)]
Ty=) PEH ~
i A

For each of 67 sectors (‘expenditure classes’) in the BLS data, we calculate the mean of
inflation across the 203 months from February 1988 to December 2004, or

= 212231 7, /203. We then take the weighted average of these across sectors to arrive at
0.153% per month:

=Y wn, =000153.

In a similar fashion we calculate our second moment, the cross-sector average of the
standard deviation of sectoral inflation. We first compute the standard deviation of
inflation across months for each sector, and then calculate the weighted mean of these
sectoral standard deviations to be 1.02%:

203

op =Y o Z(ns, —m,)%/202 = 0.0102.
s 1=

Our third moment is the average fraction of items changing price from one month to
the next. Let I(AP,;#0) be a price-change indicator for item 7 in sector s in month z. It
takes on the value 1 if the item changed price from month /—1 to month ¢, and 0
otherwise. Weighting items and sectors appropriately, this indicator averages 21.5%
across items, sectors and time:

203

I(AP #0) Z oK lz (Z g I(APg, # 0) /w?3> /203] =0.215.

=1

Our fourth and fifth moments are the serial correlation and standard deviation of an
item’s price relative to a sectoral price index. We construct the sectoral price index as

!
P, =exp E T |-
k=2
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The index is 1 at =1 in each sector, and cumulates inflation going forward. We let pg;,
denote the ratio of the price of item i to the sectoral price index, that is, p;, = Py;/Py;.
This is the relative price of item i within sector s at time 7. For each sector, we calculated
the serial correlation and standard deviation of log (py;,) across months with price
changes. We took out item-specific means to deal with any discrepancy in units (e.g. sizes
of cereal boxes). We then took the weighted mean of sector statistics to obtain a serial
correlation of 0.318 and a standard deviation of 13.9%, again across new prices:

pp=>_ \/ Yoy Yy (logpsy —logp)(10gpais, — logpy) = 0.318,
N 1

Ii=1

o= o \/Z 0y 3 (10gpy, — Iogpy)? = 0.139.
s i I=1

Here I, is shorthand for I(AP;#0), and 1, is the age (duration) of the price at the time
of its ‘death’ in month ¢. Separately, note that the sectoral price index that we defined
above is not the same as that implied by the Kimball aggregator. We do not observe all of
the prices in the market, and hence do not construct this ideal price index. When we
simulate the model below, we will construct a simulation counterpart to what we
calculated in the data.

In Table 1, we provide these moments. We compute bootstrapped standard errors by
drawing ‘quotelines’ (strings of prices for a given item) with replacement. As shown, the
moments are estimated with great precision—not surprising given the 2.8 million
microdata points on prices underlying them. If we had looked at posted prices rather
than regular prices (i.e. omitted temporary price discounts), then the main difference
would be a higher standard deviation of new relative prices over time (19% rather than
14%). Including price changes involving product turnover, seasonal changeovers or
temporary stockouts would also have boosted the standard deviation. Finally, with more
disaggregate BLS sectors, specifically 250 instead of 67, the standard deviation was
virtually identical. Our estimates in Table 1 are consistent with recent surveys by Klenow
and Malin (2010), and Nakamura and Steinsson (2013).

TABLE 1
BLS CPI MOMENTS
7 7 I(AP # 0) Py 7,
0.00153 0.0102 0.215 0.318 0.139
(0.00001) (0.0002) (0.001) (0.012) (0.002)

Notes
Standard errors are in parentheses. Source: author calculations from the CPI Research Database, January 1988
to December 2004, prices in New York, Los Angeles and Chicago.

III. MODEL ESTIMATION AND SIMULATION

We selected the statistics in Table 1 from many possible statistics because we think
that they represent key features of the data that a model should be able to mimic. We
now use the statistics in Table 1 to estimate some of the structural parameters of the
model. The parameters that we will estimate are the standard deviation of innovations
to sectoral productivity growth (o, ), the autocorrelation coefficient for the
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idiosyncratic technology process (p4), the standard deviation of innovations to the
idiosyncratic technology component (¢ ), and the magnitude of the menu cost (®).!”
We assume that sectoral technology growth follows an independent and identically
distributed process (ng\ = 0), in line with evidence in Bils and Klenow (2004). With
this assumption, the mean growth rate of sectoral productivity is calibrated directly
using the mean sectoral inflation rate from BLS data (m = 0.00153), the growth rate
of nominal consumption (gpc = 0.005), and the steady-state relationship for log (:
te, = (L=n)(gpc —T).

Although the four parameters to be estimated do not map one-to-one to data
statistics, we have strong intuition for how they relate to each other. More volatile
sectoral productivity growth, ceteris paribus, should boost the volatility of sectoral
inflation and the frequency of price changes. Higher serial correlation of the idiosyncratic
productivity term should increase the serial correlation and standard deviation of relative
price movements. A bigger standard deviation of idiosyncratic innovations should
increase the frequency of price changes and the size of relative price movements. Finally,
a higher menu cost should, ceteris paribus, reduce the frequency of price changes.

We use the Simulated Method of Moments procedure to estimate these parameters.
The BLS moments ¥y g = {0, /(AP #0),p,,0,} are matched up against the same
moments computed from simulated data, ¥g;,(A). The moments from the simulated data
are functions of the structural parameters, A = {a,,,p 4,04, ¢}. The estimation involves
finding the vector A of structural parameters that minimizes the weighted distance
between BLS moments and simulated moments:

m/\in (‘PBLS - lIIsim(A)) W(\PBLS o lIJSim(A)),'

Note that W represents the weighting matrix constructed as the inverse of the variance-
covariance matrix of the BLS moments.'®

Before each round of estimation, we fix the values of three parameters. First, we set
the elasticity of demand (evaluated at a relative price of 1) to 6 = 5, which implies a
mark-up of 25% in the case with no real rigidities. This is at the high end of most
estimates in the industrial organization literature, but lower than the value of 11 (10%
mark-up) typically used in the macro literature.

Second, we set the value of the superelasticity at the symmetric point e. Initially, we
consider ¢ = 0, the Dixit-Stiglitz case of a constant elasticity. Then we contrast this with
the case of ¢ = 10. This is the value used by Smets and Wouters (2007) and the low value
entertained by Eichenbaum and Fisher (2007), who also considered the value of 33
suggested by Kimball (1995).

Third, we choose the intermediate share in production 5. We start with # = 0, so that
production is linear in labour. Then we experiment with n = 0.5, a value considered by
Nakamura and Steinsson (2010) and close to the share of intermediates (relative to
labour) across US industries."”

Our final experiments explore two changes in the estimation procedure. First, we
explore the implications of a lower frequency of price change of 9% that is closer to the
median value across the 67 CPI sectors. And second, we estimate, instead of calibrate, the
value of the intermediate share in production 7.

To recap, we set some parameters based on the previous literature (the value for the
elasticity of demand and the random walk process for sectoral). We then either impose
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no real rigidities or add real rigidities based on parametrizations in the literature. For
each model, we then estimate the volatility of sectoral shocks, the volatility and
persistence of idiosyncratic costs, and the menu cost. Finally, we compare the resulting
estimates to limited outside evidence on the size of idiosyncratic and sectoral shocks and
the size of menu costs.

In Table 2 we present estimates of the four model parameters for the case when we
impose ¢ = 0 and n = 0. In this baseline case, the model features nominal rigidities but no
real rigidities. Note that the idiosyncratic shock must be sizeable (innovation standard
deviation of around 12%) and somewhat persistent (serial correlation around 0.68) in
order to match the persistence and volatility of item relative prices (across newly set
prices). Also worth noting is the menu cost, which amounts to around 6.6% of average
firm revenue when spent. The menu cost must be multiplied by the frequency of price
changes to obtain the average expenditures on menu costs relative to average firm
revenue. Expended menu costs are 1.33%, in the neighbourhood of estimates by Levy
et al. (1997) and Zbaracki et al. (2004) and 0.7% and 1.22%, respectively. A comparison
of the first two rows of Table 3 illustrates that the simulated method of moments
estimation is able to very closely match moments from the baseline model with moments
from the BLS data.

Figure 3 plots the model response of the sectoral price index to a negative shock to
sectoral productivity.”® Impulse responses are computed by introducing a shock to
sectoral productivity growth relative to the baseline simulation. The shock is applied
iteratively to each possible period in the simulation, creating a series of impulse
responses. Each impulse response is based on a one-period deviation in the sectoral
productivity growth rate relative to baseline that generates an eventual 1% increase in
the sectoral price index. The variation across the responses arises from the model’s

TABLE 2
ESTIMATION WITH € = 0

Structural parameters Inflation forecast coefficients Expended menu costs mean
g, DA G4 (0] T, log{ gz R? (®/Revenue)
0.0160  0.684 0.117 0.0642 —0.02 0.30 —0.04 0.15 0.0133

(0.0013) (0.015) (0.004) (0.0041)

Notes
The share of intermediates in production is #=0. Standard errors are in parentheses. Expended menu costs are
calculated as the average expenditures on menu costs relative to average firm revenue across all months.

TABLE 3
MOMENTS WITH AND WITHOUT THE MICRO REAL RIGIDITY

On I(AP # 0) Py 7,
BLS 0.0102 0.215 0.318 0.139
e=0 0.0102 0.215 0.318 0.139
=10 0.0050 0.089 0.158 0.040

Notes

The first row displays moments computed using BLS micro price data. The second and third rows present
simulated moments from the baseline model under two settings for the micro real rigidity e. The share of
intermediates in production is #=0 for both model specifications.
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FIGURE 3. Sectoral price response to a permanent sectoral productivity drop in baseline specification
Notes: Impulse responses are computed by introducing a shock to sectoral productivity growth relative to the
baseline that generates an eventual 1% increase in the sectoral price index. The solid line in the middle is the
average response across simulations, and the two dashed lines represent the boundaries for the region that
contains the middle 68% of the impulse responses.

non-linearity. In a linear model, the response is the same regardless of the starting
distribution of relative prices.

In Figure 3, the solid line in the middle is the average response across simulations.
The two dashed lines represent the boundaries for the region that contains the middle
68% of the impulse responses, which approximates one standard deviation. The width of
the bands illustrates that the underlying distribution plays a large role in the response to
sectoral shocks.

By construction, prices ultimately rise about 1% in response to the shock. Our focus
is on how long it takes to get there. The longer it takes, the greater the real output
response in the meantime. In the absence of the real rigidity and in the presence of
modest nominal rigidity (over 20% of items changing prices per month), the response is
swift. The half-life is about one month, and prices almost fully respond after six months.
Clearly, the baseline model does not generate as much persistence as sought to match
structural VAR evidence of effects lasting several years.

We next consider the micro and macro real rigidities sequentially.
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Micro real rigidity

We next simulate a model with micro real rigidities (¢ = 10) using the same structural
parameters as estimated above. The results, in Table 3, are intuitive. Adding a real
rigidity a la Kimball (1995) makes firms more reluctant to change prices (10% of the
time, down from 23%), and makes relative prices more stable (serial correlation of 0.18
down from 0.31, and standard deviation of 4% down from 15%). With the Kimball kink,
firms do not pass marginal cost shocks as fully onto their prices.

Adding the real rigidity does prolong the response to a sectoral shock. Figure 4
contains impulse responses from the two versions of the baseline estimation model. The
addition of real rigidities (¢ = 10) to the baseline model (dark dashed line) increases the
half-life of the response from less than 1 month to 4 months, and it now takes about 20
months for the full effect to be realized.

As shown in Table 3, however, adding the real rigidity pushes the model moments
away from the data moments. We therefore re-estimate the model subject to e = 10. The
resulting parameter estimates are given in Table 4, where the fit between data and model
moments (not shown) is as precise as in the baseline model estimation comparison in

09

0.8 |-

0.6 |-
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03F 4

0.1 € =0 (baseline) |
= = = ¢ =10 (baseline)
~ = €= 10 (estimate)

0 | | |
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months

FIGURE 4. Impact of micro real rigidity on sectoral price response to a permanent sectoral productivity drop
Notes: Impulse responses are computed by introducing a shock to sectoral productivity growth relative to the
baseline that generates an eventual 1% increase in the sectoral price index. Each line represents the average
response across simulations for each specification. The first two responses are generated using the baseline
model parameter estimates, while the third response uses parameter estimates from the specification with
micro real rigidities (¢ = 10).
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TABLE 4
PARAMETER ESTIMATES WITH ¢ = 10

Structural parameters Inflation forecast coefficients
Expended menu costs mean
7y, Y o ) 7 log{ g, R (®/Revenue)
0.0181  0.725 0.281  0.0963 —0.10 0.25 —0.05 0.13 0.0205

(0.0005) (0.020) (0.013) (0.0052)

Notes
The share of intermediates in production is #=0. Standard errors are in parentheses. Expended menu costs are
calculated as the average expenditures on menu costs relative to average firm revenue across all months.

Table 3. The light dashed line in Figure 4 shows that when the structural parameters are
re-estimated with e = 10, the price response is more rapid than shown by the baseline
specification with ¢ = 10 (dark dashed line), but still more persistent than the baseline
model with no real rigidities (¢ = 0).

Comparing the parameter estimates in Tables 2 and 4, two differences are evident.
First, in the presence of a micro real rigidity, the idiosyncratic shock innovation must
be very large—about 28%, compared to 12% without the real rigidity. This is the
standard deviation of the monthly innovation to firm productivity. Such big shocks are
necessary because in the presence of the micro real rigidity, firms must face very large
marginal cost shocks in order to change their relative prices as much as we observe in
the CPI data. The second notable change is to the size of menu costs. Taking into
account the frequency of price changes, menu costs absorb 2.1% of average firm
revenue. This is about double the size of menu costs estimated by the papers using
direct evidence (around 1%).

The models with and without the micro real rigidity also differ markedly in their
implications for quantity movements. For the model with ¢ = 0, Panel A of Figure 5
plots simulated prices and quantities for 100 months for a single item/firm under the
baseline specification. Both prices and quantities are relative to the industry
aggregates. Given that supply (productivity) shocks drive price movements in the
model, the price and quantity movements are in opposite directions. And given that
demand is elastic (§ = 5>1), the quantities move significantly more, in percentage
terms, than the prices do.

Panel B of Figure 5 plots simulated prices and quantities when ¢ = 10. Compared to
when ¢ = 0, quantities do not reach the same highs with ¢ = 10. The real rigidity dampens
the rise in quantity demanded when the price falls; relative quantities do not reach even
twice the symmetric value, compared to over three times the symmetric value with no real
rigidity. The flip side is that quantities fall more sharply with the real rigidity in response
to relative price increases. Whereas quantities bottom out at half the symmetric level
without the real rigidity, they frequently fall to zero in the presence of the real rigidity.
Strong real rigidity induces concavity in the demand curve, as shown in Figure 1. So
quantities hit zero at finite relative prices. Figure 5 demonstrates that this is not just a
possibility, but a regular occurrence. Across many simulations, ‘total eclipse of demand’
occurs in about 15% of months. We find this implication implausible, but it needs to be
verified with data on quantities (e.g. from scanner data).

We next look at the histogram of relative prices and relative quantities in the absence
and presence of the Kimball real rigidity, respectively. Panels A and B of Figure 6 display
histograms of relative prices (pooled across firm—months). With e = 10, relative prices are
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FIGURE 5. Simulation of firm-level prices and output
Notes: Each panel shows a simulation of relative prices and relative quantities (output) for a single firm in the
simulated dataset. The top panel is generated using the baseline model parameter estimates, while the lower
panel is generated using parameter estimates from the specification with micro real rigidities (¢ = 10).

bimodal. Firms keep their relative price close to 1 unless their marginal cost is so high
that it is not profitable to sell, in which case they price themselves out of the market.>'

Panels A and B of Figure 7 display histograms of relative quantities (again, pooled
across firm—months). Quantities are more tightly distributed in the presence of the real
rigidity. But the left tail of zeros representing zero quantity sold stands out relative to
what happens without the real rigidity.

Macro real rigidity
We next explore the impact of a macro real rigidity in the form of sticky intermediate
prices. In Table 5 we present structural parameter estimates when the intermediate share
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FIGURE 6. Histogram of relative prices
Notes: Each panel shows a histogram of relative prices generated using all price observations in the simulated
dataset. The top panel is generated using the baseline model parameter estimates, while the lower panel is
generated using parameter estimates from the specification with micro real rigidities (¢ = 10).

in production is # = 0.5. The volatility of the sectoral productivity shock is cut in half, as
a given productivity change has twice (1/n) the impact on the long-run sectoral price once
it feeds through the intermediate price. The parameters of the idiosyncratic productivity
process (p4 and 6 4) are very similar to the baseline estimates. And while the estimate of
the menu cost (®) is almost double that of the baseline estimation, the size of expended
menu costs as a share of average revenues is approximately the same as in the baseline
model. The closeness of fit of the moments between actual and simulated data (not
shown) is as precise as in the baseline estimate comparison in Table 3.
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FIGURE 7. Histogram of relative quantities
Notes: Each panel shows a histogram of relative quantities generated using all price observations in the
simulated dataset. The top panel is generated using the baseline model parameter estimates, while the lower
panel is generated using parameter estimates from the specification with micro real rigidities (¢ = 10).

TABLE 5
ESTIMATION WITH 1 = 0.5

Structural Inflation
. forec: i Expended menu
parameters orecast coefficients costs mean
aq, 04 04 (0] b log { gz, R (®/Revenue)
0.0098 0.686 0.118 0.107 0.00 0.56 —0.04 0.20 0.0135

(0.0003)  (0.025)  (0.005)  (0.0050)

Notes The Kimball superelasticity is ¢=0. Standard errors are in parentheses. Expended menu costs are
calculated as the average expenditures on menu costs relative to average firm revenue across all months.
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Figure 8 shows surprisingly rapid pass-through compared to the literature. The half-
life is a mere 2—-3 months, and the full effect is realized within 1 year. The reason is that
the frequency of price change is 21% per month, much higher than the values considered
by Basu (1995) and Nakamura and Steinsson (2010). When prices change quickly,
intermediates are also less sticky.

We therefore entertain a much lower frequency of price change of 9% per month.
This is close to the median value across the 67 CPI sectors. Nakamura and Steinsson
(2010) argue that heterogeneity in the frequency of price changes across sectors interacts
with intermediate inputs to serve as a powerful mechanism for slowing down pass-
through. They advocate using the median frequency across sectors for calibrating a one-
sector model, to mimic the effects of heterogeneity across sectors. See also Carvalho
(2006).

Using the lower frequency of price change, the first two rows of Table 6 show
structural parameter estimates for the baseline model (1 = 0) and the model with an
intermediate share of # = 0.5. In order to generate a lower frequency of price change
while continuing to match the other three moments, both models require less volatility in
the idiosyncratic shock process but greater volatility of the sectoral productivity shock
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FIGURE 8. Impact of macro real rigidity on sectoral price response to a permanent sectoral productivity drop
Notes: Impulse responses are computed by introducing a shock to sectoral productivity growth relative to the
baseline that generates an eventual 1% increase in the sectoral price index. Each line represents the average
response across simulations for each specification. The first response is generated using the baseline model
parameter estimates, while the second response uses parameter estimates from the specification with macro
real rigidities (1 = 0.5).
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TABLE 6
ESTIMATION WITH MEDIAN PRICE CHANGE FREQUENCY OF 9%

Structural Inflation E
. xpended menu
Case parameters forecast coefficients costs mean
e n Gy, P4 04 (0] i log{ gz R (®/Revenue)
0 0 0.0241 0.862  0.0829  0.163 0.00 030 —0.04 0.28 0.0141
(0.0006) (0.014) (0.0051) (0.009)
0 0.5 0.0153 0.867 0.0809 0.265 0.06 030 —0.05 0.35 0.0141
(0.0006) (0.007) (0.0022) (0.012)
10 0 0.0318  0.895  0.176 0.237 —-0.03 0.18 —0.02 0.33 0.0212

(0.0029) (0.009) (0.009)  (0.028)

Notes

The first two columns display the settings for the real rigidities parameters in each estimation. Standard errors
are in parentheses. Expended menu costs are calculated as the average expenditures on menu costs relative to
average firm revenue across all months.

relative to estimates with a higher frequency of price change. As expected, a higher menu
cost @ is necessary to lower the frequency of price change. Factoring in the lower
frequency of paying the menu cost, the expended menu cost as a share of average revenue
is only slightly higher (1.4%) in these specifications relative to the baseline specification
(1.3%) where the price change frequency is 21%.

The final row of Table 6 reports parameter estimates from the model with micro real
rigidities. As in the estimates with a higher frequency of price change, this model requires
larger sectoral and idiosyncratic shock volatility to achieve the same frequency of price
change as models without the Kimball micro real rigidity. The expended menu cost
remains higher as well. Table 7 reports the corresponding moments all three estimation
exercises, demonstrating a very close fit between data and model moments.

Given the importance of the sectoral technology shock for this particular macro real
rigidity, we can further discipline this model by drawing evidence from industry data. In
the BLS Multifactor Productivity Database, the weighted mean standard deviation of
sectoral productivity growth is 3.36% at an annual frequency. Converting this to a
monthly frequency under our assumption of an independent and identically distributed
process for sectoral productivity growth, the standard deviation of sectoral technology
shocks is 1.02%.

TABLE 7
DATA AND MODEL MOMENTS CORRESPONDING TO ESTIMATIONS WITH MEDIAN PRICE
CHANGE FREQUENCY OF 9%

On I(AP # 0) Py 7,
BLS data 0.0102 0.090 0.318 0.139
e=0n=0 0.0102 0.090 0.317 0.139
e=07n=0.5 0.0102 0.090 0.318 0.139
e=10n=0 0.0102 0.090 0.318 0.139

Notes

The first row displays moments computed using BLS micro price data with the exception of the price-change
frequency moment, which has been lowered to 9% for this experiment. The other rows present simulated
moments using the estimated parameters in Table 6 under various settings for the real rigidities ¢ and 7.
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We next shift our approach to estimate (instead of calibrate) the intermediate share in
production. For this final estimation, we set the parameter for the standard deviation of
the sectoral technology shock, a,,, to match the data estimate of 1.02%. This frees up a
degree of freedom to estimate the intermediate share as one of the four structural
parameters in the simulated method of moments procedure. Table 8 shows the results of
this estimation, where the fit of the moments (not shown) is as precise as displayed in
Table 7 for the prior estimations. The intermediate share is estimated to be n = 0.72. This
is higher than our calibrated value of 0.5, but in line with values considered by Basu
(1995) and Nakamura and Steinsson (2010). Relative to the estimated models in Table 7
with lower intermediate shares, the model with n = 0.72 has a larger menu cost @, but the
expended menu cost is little changed.

Figure 9 displays the impulse response functions for the macro real rigidity models
from Tables 6 and 8. The re-estimation to match a lower frequency of price change
results in delayed adjustment of sectoral prices, as expected. The impulse response with
n = 0 has a half-life of 2 months, and full pass-through occurs in about a year. When the
intermediate share is raised to 1 = 0.5, the half-life rises to 3 months, and full pass-
through takes place after about 20 months. In the final model, where the sectoral
technology shock is set to match industry data and # is estimated at 0.72, the half-life of
the impulse response function increases to nearly 5 months, and full pass-through takes
longer than 2 years to achieve. The latter case illustrates that a model with sticky
intermediates can generate highly persistent effects on real variables at the sectoral level,
while being consistent with micro facts on price adjustment and sectoral facts on the
volatility of inflation and productivity growth.

IV. CONCLUSION

Research on monetary policy shocks seeks a model in which these shocks have real effects
lasting several years. Promising ingredients include real rigidities coupled with nominal
rigidities. In this paper we explored the implications of Kimball’s concave demand curve
and sticky intermediate prices. The Kimball kink makes firms averse to changing their
relative prices, so that it takes a long time for aggregate shocks to fully work themselves
into prices. Sticky intermediate prices make price changers slow to fully incorporate
nominal shocks, since their input prices have not adjusted. With roundabout production
this slows down marginal cost adjustments for future price changers.

TABLE 8
ESTIMATION OF INTERMEDIATES SHARE (1) WITH MEDIAN PRICE CHANGE
FREQUENCY OF 9%

Structural Inﬂati(f);ll forecast Average menu

parameters coefficients cost mean

n 04 04 D g log { gz, R? (®/Revenue)
0.721 0.865 0.0826 0.395 0.09 0.53 —0.05 0.40 0.0144

(0.007) (0.008) (0.004) (0.019)

Notes The Kimball superelasticity is set to =0 for this estimation. Standard errors are in parentheses. The
standard deviation of the sectoral technology shock is set to 0.0102 to match evidence from the BLS Multifactor
Productivity Database.
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FIGURE 9. Impact of macro real rigidity on sectoral price response to a permanent sectoral productivity drop
when price change frequency is 9%.

Notes: Impulse responses are computed by introducing a shock to sectoral productivity growth relative to the
baseline that generates an eventual 1% increase in the sectoral price index. Each line represents the average
response across simulations for each specification. All responses are based on parameter estimates that match
a price change frequency of 9% (see Tables 6 and 8). The first three responses are generated from
specifications with different intermediate shares in production, and the final response is generated from the
specification with the Kimball micro real rigidity (¢ = 10).

The micro evidence from the US CPI displays large changes in relative prices across
items in narrow sectors—the standard deviation of monthly innovations is around 14%.
Reconciling this micro fact with the Kimball real rigidity required large shocks to firm
productivity (around 28% per month). Firms would need to be hit with big shocks to
explain why they would change their relative prices so much when facing a kinked
demand curve.

Our result is consistent with recent (negative) findings obtained by other studies.
Dossche et al. (2010) estimate a kinked demand curve using price and quantity data from
a large Euro Area retailer. Beck and Lein (2015) do so using a homescanner dataset
covering 280 goods in Belgium, Germany and the Netherlands. Both papers find that the
elasticity of demand is increasing in an item’s relative price, but not nearly as much as
assumed in the macro literature—a superelasticity closer to 2 than to 10.

Sticky intermediate prices, in contrast, do not require such large idiosyncratic
productivity shocks. They are also consistent with the observed modest volatility of
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sectoral inflation and sectoral productivity growth (both about 1% standard deviation
across months). We conclude that macro real rigidities such as sticky intermediate prices
and sticky wages are the more promising microfoundations for persistent aggregate real
effects of nominal shocks.

We think that the logic of our results would extend to other micro vs. macro real
rigidities. Firm-specific inputs imply sharply diminishing return to variable inputs, making
firms reluctant to move their relative prices. Sticky wages serve as a common sticky input
that allows pass-through of idiosyncratic shocks, just like sticky intermediate prices do.
We conclude that macro real rigidities provide a more realistic microfoundation than
micro real rigidities for the persistent real aggregate effects of nominal shocks.
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NOTES

1. For a sampling of estimates, each using a different identification strategy, see Christiano et al. (1999),
Romer and Romer (2004), Bernanke ez al. (2005) and Smets and Wouters (2007).

2. Chari et al. (2000) examine time-dependent models in the spirit of Taylor (1980). Golosov and Lucas (2007)
characterize a state-dependent model, i.e. a model with fixed ‘menu costs’ of changing prices and
endogenous timing of price changes. Dotsey ef al. (1999) investigate a hybrid of the Calvo (1983) time-
dependent model and a conventional state-dependent model.

3. See Bils and Klenow (2004), Klenow and Kryvtsov (2008), and Nakamura and Steinsson (2008) for US
evidence.

4. Firm-specific inputs feature prominently in, for example, Woodford (2003), Gertler and Leahy (2008), and
Altig et al. (2011).

5. Applications include Dotsey and King (2005), Eichenbaum and Fisher (2007), Gopinath and Itskhoki
(2010), Gopinath et al. (2010) and Linde et al. (2015).

6. See Goldberg and Hellerstein (2011). Nakamura and Steinsson (2008) document a high positive correlation
between the frequency of price changes of goods at the final and intermediate stages. Bils and Klenow
(2004) report that consumer prices are stickier for goods with a high fraction of intermediate inputs relative
to gross output.

7. See Blanchard and Fischer (1994).

8. The Kimball specification reduces to CES preferences if Y(x) = x
substitution between items.

9. Making disutility from work convex rather than linear would add another micro real rigidity. Our focus will
be on an industry’s dynamics, with labour moving in and out of the industry freely, rather than the elasticity
of aggregate labour supply.

10. Firms do not use intermediates produced by other sectors. We limit sectoral interactions in this way for
tractability. But input-output matrices do typically feature high weights on own-industry inputs, and
upstream—-downstream price stickiness is highly correlated—see Nakamura and Steinsson (2008), for
example.

11. The precise mechanism by which real rigidities delay price responses to a sectoral technology shock is more
involved. A positive sectoral technology shock will lead to a decline in the optimal price, but firms will
choose to adjust only if the potential loss in value to the firm from not changing price is greater than the
menu cost. When we quantify this loss in a later section, we will find that real rigidities dampen the profit
loss from not changing one’s price.

12. The discrete grid for idiosyncratic productivity contains seven points.

13. The discrete grids for sectoral inflation, the sectoral real marginal cost and the sectoral technology growth
shock contain 11, 7 and 7 points, respectively.

14. The size of the panel was chosen to match the size of the average sector in the BLS dataset.

O=D/0" where 0 is the elasticity of
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15. Ideally, we would use these equations to endogenously determine D, and n,. However, the assumption of a
constant value for D, does not appear to be too restrictive for the model. The standard deviation of Dy,
computed using simulated data and equation (4), is relatively small at 0.002.

16. See Klenow and Kryvtsov (2008) for more detail on the CPI Research Database.

17. The literature on measuring menu costs directly is, in our view, too thin to put on the same plane as the
moments in Table 1 when it comes to estimation. We will, however, compare our estimated menu costs to
such studies.

18. As discussed in Gourieroux and Monfort (1996), the resulting estimator is consistent. To limit simulation
error, we simulate a panel in the estimation procedure that is ten times as long as the BLS dataset. Since
there are no permanent differences across firms, this approach is the same as simulating ten panels, each
with a different initial distribution, and then taking the average of the moments across the ten panels. We
choose the former approach for computational simplicity.

19. We use the Multifactor Productivity Database from the US Bureau of Labor Statistics here: see
www.bls.gov/mfp (accessed 22 February 2016). It contains annual data from 1987-2012 and covers 60
industries (18 in manufacturing). We include energy, materials and services as intermediate inputs.

20. We analyse a sectoral productivity shock rather than a monetary shock because solving an industry
equilibrium involves fewer state variables than solving for general equilibrium. Looking at industry shocks
has the further advantage of obviating the need to specify the monetary policy rule, which can obscure the
effect of real rigidities on the price level. We consider negative shocks here, but we have also computed
results with positive shocks. Despite the asymmetry of the profit function (Figure 2), the impulse response
from positive vs. negative sectoral shocks are surprisingly symmetric.

21. In the model, firms do not have the option of simply stocking out temporarily. This occurs in about 7% of
months in the CPI microdata, according to Bils and Klenow (2004). But no data on prices are available in
such months. The CPI relative price variability applies to items in stock.
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