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Ž .Building on evidence that a productivity growth from learning by doing dimin-
Ž .ishes as experience accumulates with a technology and b learning by doing is

largely specific to each production technology, this paper models a firm’s decision
of when to update its technology. The model implies that technology updates
endogenously bring large drops in productivity. The model also implies that
technology updates are more likely in a boom than in a recession since a high rate
of production enables the firm to learn more quickly about the new technology.
The forces in this model may help explain some features of plant and industry level

Ž .data, such as the procyclicality of investment including plant investment spikes
and the modest correlation between labor input and productivity. Journal of
Economic Literature Classification Numbers: O31, L6, D92. Q 1998 Academic Press

1. INTRODUCTION

A number of empirical studies of plant productivity indicate that when
firms change their production technology, their productivity initially falls
and then gradually rises to eventually overtake the level achieved with the
old technology.1 The drop in productivity suggests that production knowl-
edge does not apply equally across the old and new production technolo-
gies, and the gradual rise in productivity suggests learning by doing.2 If

* I am grateful to Boyan Jovanovic and two anonymous referees for many helpful
comments.

1 w x w x w xSee the evidence presented in Cochran 14 , Garg and Milliman 21 , Baloff 5]7 , Russell
w x w x w x34 , and Pegels 32 . See also Yorukoglu 36 for evidence of the same pattern for firms
investing in information technology.

2 w xFor surveys of empirical studies of learning by doing see Yelle 35 and Argotte and Epple
w x w x w x1 . Jovanovic and Nyarko 30 also discuss a number of studies. Bahk and Gort 3 find
evidence of learning by doing in U.S. manufacturing plants. Examining firm-level data on

w xindividual semiconductor products, Irwin and Klenow 28 find evidence for learning by doing
and its limited applicability across generations of chips.
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what firms learn is specific to a given production technology the question
arises as to why firms update their technology at all. The answer could be
that productivity gains from learning eventually slow, while the new
technologies continue to get better and better. Eventually it is worth
abandoning an old technology for a newer technology despite the lack of
experience with the newer technology.3

Building on evidence that learning is specific to each production tech-
nology and yields substantial but diminishing productivity gains, this study
models a firm’s decision of when to update its process technology.4 I
emphasize three implications of the model. First, firm productivity endoge-
nously falls when the firm updates its technology. The firm does not wait
until operating the leading-edge technology with no experience matches
the productivity of the technology currently used since learning is initially
rapid with the new technology. Second, firms are more likely to update
technology when demand is high than when demand is low. This is because
a sustained high rate of production enables the firm to learn more quickly
about the new technology. Third, the correlation between firm productivity
and labor input is low because the rate of learning is high when productiv-
ity is relatively low and low when productivity is relatively high. The firm
keeps labor input high as it commences production with a new technology
because, although the current marginal product is low, there is much to
learn.

The remainder of the paper proceeds as follows. In Section 2 I describe
the model in detail. In Section 3 I then cast the firm’s profit maximization
problem as a dynamic program. In Section 4 I calibrate the model and
solve it for optimal firm behavior in the face of demand shocks: when to
update technology and how much labor to hire each period. I characterize
the model’s implications in Section 5, and compare them to features of
manufacturing industry and plant level data in Section 6. The industry data
comes from the NBER Manufacturing Productivity Database maintained

3 A slowing rate of productivity gains from learning does not require that learning be
literally bounded. Consider the typical formulation of productivity as a function of cumulative
experience raised to a power less than 1. In this formulation learning is unbounded, but the

w xrate of productivity gains from learning falls as experience accumulates. Asher 2 , Conway
w x w xand Schultz 15 , and Baloff 5, 8 provide evidence that productivity gains from learning slow

w xdown as experience accumulates. Young 37 incorporates bounded learning in a model of
endogenous growth.

4 w xThe environment explored by Zeckhauser 38 is quite close to the one examined here.
w xAnother related paper is Parente 31 . Parente also models technology adoption in the

Žpresence of firm-specific and technology-specific learning by doing although not with
.variable labor input and demand shocks . His emphasis is on how capital markets facilitate

technology adoption given consumers’ desire to smooth consumption in the face of firm
fluctuations. In contrast, the emphasis here is on calibrating a model to explore its potential
usefulness in explaining industry cyclical behavior and idiosyncratic plant behavior.
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w xby Bartelsman and Gray 10 . The plant level data is described in other
w xstudies, such as Baily, Hulten, and Campbell 4 . I offer conclusions in

Section 7.

2. A MODEL WITH ENDOGENOUS TECHNOLOGY UPDATING

Consider a representative consumer maximizing utility over hours worked
and over the consumption of a fixed measure M of goods, with momentary
utility of the form

u C s C1rŽ1y1re . y hNŽ .t t t

with

M 1y1reC s Y i di.Ž .Ht t
0

Ž . w xHere Y i is output of good i g 0, M and e is the elasticity of substitu-
tion between any pair of goods. Under these preferences the consumer’s
demand curve for good i is

y1reY iŽ .t
P i s , 2.1Ž . Ž .t Ct

Ž .where P i is the price of good i relative to that of the utility-maximizingt
composite C . The price elasticity of demand, conditional on C, equals thet
elasticity of substitution e between goods in utility. The demand for good i
is affected by the prices of other goods solely through the composite C.
Conditional on a one-to-one mapping between goods and firms, firms
affect each other only through their impact on C. Given a positive
measure of firms, each firm views C as an exogenous demand process.

Each firm maximizes the present value of its cash flows

`
yt w xE 1 q r P Y y w N .Ž .Ý0 t t t t

ts0

Here r denotes the real interest rate, w the wage and N denotes thet t
firm’s labor input. The firm hires labor in a competitive market, with the
real wage growing at the rate m of economywide average productivitye

Ž .growth. Elastic demand e ) 1 is, of course, necessary for the firm’s
problem to be well defined. ‘‘Demand’’ C is assumed to be the product of
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a stationary stochastic component and a nonstochastic trend component:

C s D T ,t t t

D s D r ev t ,t tq1 2.2Ž .

T s T e me ,t ty1

< < Ž 2 .where r - 1 and v ; i.i.d. N 0, s . The firm’s production technology ist v

Y s QlN , 2.3Ž .t t t

where Ql is the level of productivity and Q is the firm’s level oft t
‘‘experience’’ with the technology it is currently using. The firm’s technol-
ogy is t periods old, so it was leading-edge t periods ago. Each period the

Ž .firm decides whether to continue with the old technology t s t q 1t ty1
Ž . 5or adopt the leading-edge technology t s 0 . The firm faces the follow-t

ing transition process for experience Q :t

¡ 1r lA , if t s 0,t t~ YQ s 2.4Ž .ty1t 1rl m rlmin g A , e Q q , if t s t q 1,tyt ty1 t ty1ey1rl 1yet¢ ž /A Tt t

with

A s A e m , g ) 1, 0 - l - 1.t ty1

A represents the level of frontier technology in the industry, whicht
Ž .advances at the rate m per year. As the first line of 2.4 shows, when the

Ž .firm adopts a leading-edge technology t s 0 it does not operate the
Ž .technology at maximum efficiency right away. The firm has g y 1 % to

learn about operating the technology at efficiency g A . Each technologyt
confronts the firm with a separate learning curve. As shown in the second

Ž .term in the min expression of 2.4 , with each technology firms learn by

5 The firm never chooses 0 - t - t q 1 because adopting an old technology is inferiort ty1
to adopting the frontier technology. The firm either sticks with last period’s technology or
switches to the most advanced technology. This result depends critically on the assumption of
no transferability of learning to ‘‘nearby’’ technologies. Lack of transferability is consistent
with the evidence cited earlier for productivity drops, as well as with the evidence on

w xsemiconductor chips in Irwin and Klenow 28 .
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doing as their production Y feeds into higher experience Q.6 The parame-
ter l determines the speed of learning: the higher is l, the faster the firm
closes the gap between its attained productivity and the maximum attain-
able productivity with the vintage. As shown in the first term in the min

Ž .expression of 2.4 , the learning is bounded above for each technology by
g A ; there is only so much to learn. The more production experiencetyt

the firm has with a technology, the less it has left to learn. The learning is
specific to each technology, as the starting productivity with each technol-
ogy is the same regardless of the level of experience with the old technol-
ogy. Why do firms update their technologies at all in this environment?
Because an old technology, even operated at peak efficiency, eventually
becomes less efficient than the ever-advancing frontier technology, even
operated with no experience.

3. SOLVING THE MODEL

The leading-edge technology A faced by the firm advances at thet

constant rate m. Since Q starts at A1r l with each technology, productivity
Ql trends upward at the average rate of m. Economywide average produc-
tivity growth occurs at the rate m , driving economywide real wage growthe
at the same rate. Since the firm faces real wages rising at rate m , firme

Ž . Ž .Ž . 7labor input N grows on average at the rate e y 1 m y m . A firm withe
faster productivity growth than the economy overall will draw in labor,

Ž .more so the more price-elastic is demand. Combining 2.3 and growth in
the leading-edge technology at rate m, the firm’s real output will grow at

Ž .Ž . Ž .the rate m q e y 1 m y m . Equation 2.1 then implies that the firm’se
Ž .relative price will grow at the rate m y m . An industry with rapidlye

Ž .advancing technology m ) m , such as personal computers, will see itse
relative price fall over time. Finally, the firm’s ‘‘nominal’’ output will grow

Ž .Ž .at the rate m q e y 1 m y m .e e
Using these average growth rates, the firm’s problem can be reexpressed

ˆ 1r l ˆ Žin terms of stationary variables. Defining Q s Q rA , N s N r A rt t t t t t

6 Ž .The exponents and divisors in the second line of the learning transition equation in 2.4
keep the learning from becoming easier as the firm’s size expands with rising demand and
improving technology. As will be clear when the problem is expressed in stationary form, this
means the firm faces the ‘‘same’’ learning problem with every technology.

7 Ž .It is straightforward to show that 1 if labor input grows any faster, profits diverge to
Ž .minus infinity, and 2 if labor input grows any slower, it falls below the level warranted by the

static marginal product of labor.
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ey1 ˆ e 1ye. Ž .T , w s w rT , and Y s Y r A T , the firm’s problem isˆt t t ty1 ty1 t t
equï alent to8

` 1y1re
t l 1reˆ ˆ ˆmax E b Q N D y wNˆÝ ž /0 t t t t

ˆ� 4t , N ts0t t

subject to

D s D r ev t , 3.1Ž .t ty1

1, if t s 0,t
Q̂ s 3.2Ž .t ymt ˆ ˆ½ min g e , Q q Y , if t s t q 1.ž /ty1 ty1 t ty1

ˆ w .Therefore Q g 1, g . The firm can, at worst, adopt the leading-edget
technology and operate it with productivity 1. The firm cannot operate at
efficiency g with the current leading-edge technology since it can only
improve on 1 by accumulating experience.

The problem can be cast as the dynamic program

1y1re
l 1reˆ ˆ ˆ ˆ ˆmax E v t , D , Q s Q N D y wN q b v t , D , QˆŽ . Ž .ž /½ 5t ty1 t t t t t t t tq1 tq1

ˆ� 4t , Nt t

DPŽ .

Ž . Ž . Ž .subject to 3.1 and 3.2 . The state variables are 1 the vintage t of last
Ž . Ž .period’s production technology, 2 the current level of demand D, and 3

the level of productivity the firm will enjoy if it continues to use last
ˆperiod’s vintage of technology, Q. The firm can adopt the leading-edge

production technology by setting t s 0. Economic logic gives us an uppert
bound on the ergodic set for the age of the technology t . A necessary

Ž .condition for sticking with a technology is that g exp ymt G 1; if t is
such that this does not hold, then operating the leading-edge technology
with no experience yields higher productivity than sticking with the old
technology. The leading-edge technology is advancing at rate m, so adopt-
ing it eventually dominates any given older vintage. Hence t g
� Ž Ž . .40, 1, . . . , Integer ln g rm .

Ž . Ž . � 4A two-state approximation to 3.1 has ln D g ys , s with s s
Ž 2 .1r2 Ž .s r 1 y r and transition probabilities equal to 1 y r r2. Sincev

ˆ ˆw . � 4Q g 1, g , I consider Q g 1, 1 q 0.001, 1 q 0.002, . . . , g y 0.001 , ort tq1
productivity increments of roughly one-tenth of 1%.

Ž .Given the discrete state space, it is straightforward to iterate on DP ,
starting from an initial guess v for the value function. When the func-0

8 Ž Ž .Ž .. Ž .b s exp m q m y m e y 1 r 1 q r . I omit a constant multiplying the present valuee e
of net cash flows.
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TABLE I
Parameters

e Price elasticity of demand for the firm’s output
r First order autocorrelation of the stationary demand

shock process
s Standard deviation of innovations to the stationaryv

demand shock process
m Deterministic growth rate of wages and demande
m Deterministic growth rate of the leading edge

technology available to the firm
r Real interest rate
g Ratio of maximal to initial productivity
l Elasticity of productivity with respect to experience

Ž .w Wage scales the firmˆ

tional iterates converge within some tolerance, we have a value function
Ž .and associated policy rules that approximately solve DP . For the parame-

ter values considered below, b - 1 so that discounted cash flow is finite.
For every set of parameter values discussed below, I found that the value
function converged within a tolerance of 0.001%.

4. CALIBRATION

Table I reviews the structural parameters of the model for easy refer-
ence. Table II gives the baseline set of parameter values, chosen as
follows:

e s price elasticity of demand for the firm’s output. With production
Ž .Ž .linear in labor, labor grows at the rate e y 1 m y m , where e is thee

price elasticity of demand. In the model m is the exogenous growth rate of

TABLE II
Baseline Parameter Values

e s 3.00
r s 0.95

s s 0.018v

m s 0.63%e
m s 0.63%
r s 2%
l s 0.32
g s 2.00
w s 1.32ˆ
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Ž .industry total factor productivity TFP . Thus, according to the model, a
regression of average growth in N on the average growth rate of TFP

Ž .across industries yields a consistent estimate of e y 1 . Using 449 four-digit
w xindustries in the NBER Manufacturing Productivity Database 10 , I

regressed average employment growth on average TFP growth over the
Ž .period 1960]1990. The OLS estimate of e is 3.03 standard error 0.39 .

Since e significantly exceeds 1, the estimate provides evidence that theˆ
demand for U.S. manufactures is price-elastic.

r, s , and m . Recall that aggregate demand C can be constructedv e
from

M 1y1reC s Y i diŽ .Ht t
0

and broken into stochastic stationary and nonstochastic trend components

C s D T ,t t t

D s D ev t ,t ty1

T s T e me .t ty1

Using e s 3 and annual data for the 449 manufacturing industries in theˆ
NBER Manufacturing Productivity Database, I constructed an annual
version of C. Its properties were very similar to those of the simple sum of
the 449 industries, or annual real manufacturing output. So for estimating
r I consider the properties of quarterly real manufacturing output over the
period 1960:]1990:4. I use OLS to estimate

ln C s constant q m 1 y r t q r ln C q v .Ž .t e ty1 t

Ž .The resulting estimates are m s 0.0063 standard error 0.0031 , r s 0.95e
Ž .standard error 0.03 , and s s 0.018.v

m. Although this is a partial equilibrium model, in general equilibrium
the growth rate of consumption will equal the average growth rate of
industry TFP. For this reason I set the baseline value for m to be 0.63%
per quarter, the same as m . Of course, industry TFP growth rates doe
differ, so it is reasonable to consider individual industries as having
m / m . Averaging TFP growth over the period 1960]1990 yields estimatese
of m for each of the 449 manufacturing industries. Annual rates of TFP
growth range from y3.6% per year for ‘‘Primary Smelting and Refining of

Ž .Nonferrous Metals, Except Copper and Aluminum’’ SIC 3339 to q9.0%
Ž .per year for ‘‘Electronic Computing Equipment’’ SIC 3573 .
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r. Typical estimates for the United States are a capital share of 1r3, a
capital]output ratio of 2, and an annual depreciation rate of around 9%,
suggesting an annual r of about 8%, or about 2% per quarter.

l. The learning by doing literature is filled with estimates of learning
clustered around the rate of 20%.9 Many of these studies, such as Baloff
w x w x w x5]8 , Garg and Milliman 21 , and Irwin and Klenow 28 , are for a single
production process, just as required to calibrate the model here.10 The
20% figure refers to the rate at which productivity rises with a doubling of
cumulative output. Thus 2 l s 1.2, which implies l s 0.32.

w xg . Jovanovic and Nyarko 30 report ‘‘progress ratios’’}ratios of peak
to initial productivity}from a dozen empirical studies of learning by
doing. The range is 1.14]2.9 for 10 of their 12 studies, so I consider g s 2
as the baseline value. Since the range is rather wide, I also consider 1.5
and 2.5.

Ž .w. The detrended wage determines the size of the firm and thereforeˆ
the scale of the learning problem. In essence, units matter since experi-
ence starts at ‘‘1’’ and rises with cumulative output toward g . I set w soˆ
that, conditional on the other parameter values, there is one technology
update every 23 quarters, which is the average duration from peak to

Ž .trough of postwar U.S. business cycles see www.nber.org .

5. CHARACTERIZING TECHNOLOGY UPDATES

Table II lists the baseline set of parameter values. Table III character-
izes optimal firm behavior under various sets of parameter values. Row 1
of Table III gives results with the baseline set, except with s s 0 so thatv

there are no demand shocks. Under these parameter values, the firm finds
Žit optimal to update its technology every 23 quarters as set in the scaling

.of the wage . The path of firm productivity over 100 quarters is shown in
Fig. 1. Productivity falls 19% in update quarters. The firm could wait until
the frontier technology is so much better than the old technology that
productivity continues to rise through the shift to each new technology, but
it is not optimal to do so. This is because rapid initial learning justifies
earlier adoption of the new technology. If firms were staggered across
different vintages, the ratio of peak-to-trough productivity across firms
would be 1.24.

9 w x w xSee Yelle 35 and Argotte and Epple 1 for surveys.
10 w xBahk and Gort 3 estimate much slower learning by doing, but they do not control for

changes in production technology at a plant.
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TABLE III
Optimal Updating

Peak TFPTFP drop
Frequency

%Ž . Trough TFP

Ž .Baseline with no shocks 23 19 1.24
Ž .Faster frontier growth m s 3.5 vs. 2.5% 19 18 1.23
Ž .Slower frontier growth m s 1.5 vs. 2.5% 27 20 1.25

Ž .Bigger progress ratio g s 2.5 vs. 2 32 26 1.32
Ž .Smaller progress ratio g s 1.5 vs. 2 14 11 1.13

Ž .Faster learning l s 0.40 vs. 0.32 28 22 1.28
Ž .Slower learning l s 0.20 vs. 0.32 23 11 1.14

Ž .Higher real interest rate r s 3 vs. 2% 24 19 1.24
Ž .Lower real interest rate r s 1 vs. 2% 22 19 1.24

Ž .Higher elasticity of demand e s 3.5 vs. 3 24 19 1.24
Ž .Lower elasticity of demand e s 2.5 vs. 3 23 19 1.24

To gain insight into the model’s properties, I consider alternative param-
eter values to see how they alter the model’s implications. In the first
exercise I increase m, the speed at which each successive vintage improves
on the previous vintage, from 2.5 to 3.5%. I find that updates are more
frequent when frontier technology advances more rapidly. Specifically,
when m s 3.5% per year the firm updates every 19 quarters, as opposed to

Ž .every 23 quarters when m s 2.5% see Fig. 2 . For a given vintage of the
technology in use, the experience lost when updating is no larger while the
frontier technology adopted is better because of more rapid frontier
advance. In other words, the opportunity cost of updating has not changed
while the benefit has risen at all vintage levels. Thus more frequent
updating. I also find that the productivity drop accompanying updates is

FIG. 1. Optimal updating.
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FIG. 2. Faster frontier growth.

Ž .slightly smaller 18 vs. 19% . The shorter interval over which each vintage
is used means less experience is acquired with each vintage. The frequently
updating firm will accept a smaller initial drop in productivity since it will
not stick with the technology as long. The peak-to-trough ratio is slightly

Ž . 11smaller with faster growth 1.23 vs. 1.24 .
In the second exercise I increase g , the ‘‘progress ratio’’ or ratio of

Ž .maximum to initial productivity with a technology see Fig. 3 . A higher g
means there is more to learn with each vintage. I consider g s 2.5,
compared to the baseline value of 2.0. The higher g leads the firm to
update less frequently. The firm sticks with a vintage for 32 quarters as
opposed to 23. Since there is more to learn, the firm sticks with each
technology longer and learns more with each. Moreover, both the produc-

Ž . Žtivity drop 26 vs. 19% and the ratio of peak-to-trough productivity 1.32
.vs. 1.24 rise. The firm tolerates a bigger drop in productivity because it

will reap benefits of the new technology for a longer stretch. As Table III
shows, the results are symmetric with respect to lowering g to 1.5: higher
frequency of updates, smaller productivity drops, and smaller peak-to-
trough ratio.

11 w xThis prediction contrasts with Dwyer’s 20 finding that the dispersion of plant productiv-
ity is larger in those U.S. textile industries with more rapid productivity growth. It is possible
that the progress ratio g tends to be higher in faster growing industries, which we will see
would imply a higher peak-to-trough ratio. Where technology is changing rapidly, there may
be more to learn about each technology. Consistent with this hypothesis, the ratio of

Ž w xpeak-to-trough ‘‘yield’’ of chips is reputed to be about 9 see Irwin and Klenow 28 for
evidence that the chip defect rate goes from 90 down to 10% over the typical chip plant’s

.life . This ratio is much higher than for other processes documented by Jovanovic and Nyarko
w x30 , for which the technology is presumably changing more slowly than for semiconductors.
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FIG. 3. Bigger progress ratio.

I next increase l, the speed of learning by doing. I find that updates
occur every 28 quarters when l s 0.40, compared to every 23 quarters
when l s 0.32. The TFP drop and peak-to-trough TFP are higher at 22%
Ž . Ž .vs. 19% and 1.28 vs. 1.24 . The higher learning rate encourages firms to
stick with the old technology longer, and so they tolerate a larger drop. As
Table III shows, the results are not symmetric with respect to lowering l.
When I let l s 0.2, the firm uses each technology for 23 quarters, just like

Ž .when l s 0.32, but learns less and so exhibits a smaller TFP drop 11%
Ž .and a smaller peak-to-trough ratio 1.14 . Note that in the extreme case of

l s 0, where there is no learning, the firm simply updates every quarter
since there is no experience to lose.

The next two rows of Table III report results with higher and lower real
Ž . Ž .interest rates 3 and 1%, respectively than in the baseline case 2% . As

expected from the investment nature of technology updating, the firm
updates less frequently the higher is the interest rate. But the effect on
timing is modest, which is not surprising given that the magnitude of the
real interest rate is swamped by the magnitude of movements in productiv-
ity around updates.

The final two rows of Table III give the results with a higher and lower
Ž . Ž .elasticity of product demand 3.5 and 2.5 than the baseline case 3 . As

shown, the results are not very sensitive to this parameter’s value.
I now consider the impact of demand shocks on firm updating. For each

Ž .of the two demand states low demand and high demand , Table IV gives
the mean age of the technology abandoned during that state and the
fraction of technology updates occurring during that state. Under the
estimated autocorrelation coefficient of r s 0.95 and the estimated shock
standard deviation of s s 0.018, firms update their technology after 25.0v
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TABLE IV
Optimal Updating with Demand Shocks

Low demand High demand

Ž . Ž . Ž .No shocks r s 0, s s 0 23.0 50% 23.0 50%v

Ž . Ž . Ž .Point Estimates r s 0.95, s s 0.018 25.0 46% 23.1 54%v

Ž . Ž . Ž .More persistence r s 0.99, s s 0.018 26.0 47% 23.0 53%v

Ž . Ž . Ž .Less persistence r s 0.50, s s 0.018 23.2 63% 24.0 37%v

Ž . Ž . Ž .No persistence r s 0, s s 0.018 23.3 75% 24.0 25%v

Ž . Ž . Ž .Bigger shocks r s 0.95, s s 0.03 25.0 46% 23.1 54%v

Ž . Ž . Ž .Smaller shocks r s 0.95, s s 0.01 24.0 48% 23.0 52%v

Ž . Ž .quarters on average if demand is low and after 23.1 quarters on average
if demand is high. So firms delay technology updates in recessions, prefer-

Žring to do them during booms 54% of all updates being carried out during
.high demand states . The next row illustrates that firms delay even more in

recessions relative to booms when demand shocks are more persistent
Ž .r s 0.99 vs. 0.95 .

w xIn contrast, Cooper and Haltiwanger’s 16 model of machine replace-
ment predicts that firms will retool during slow times. They find that,
consistent with their model, U.S. auto firms retool their plants in months
of low seasonal demand. There are two differences between our models
that together explain the divergence in our predictions. The first difference
is that my model is one of protracted learning by doing, whereas theirs is
one of a single month of downtime. In the presence of learning by doing,
peak demand has the beneficent by-product of pushing the firm down the
learning curve faster. When there is instead ‘‘learning by waiting,’’ as in
Cooper and Haltiwanger’s setup, updating in recessions is preferred be-
cause the low transitional productivity is endured with a lower scale of
production.

The second difference is that the current model focuses on business
cycles rather than on seasonal cycles. Business cycles are more persistent
than seasonal cycles, and the sensitivity of technology updates to demand
shocks depends on their persistence. With prolonged learning a prolonged
boom offers the benefit of faster learning. When shocks are not persistent
in my model, I get Cooper and Haltiwanger’s result that firms prefer to
switch in slow times. As Table IV shows, when there is much less

Ž . Ž .persistence r s 0.5 or no persistence r s 0 of the shocks, firms are
Žmore likely to update their technology in recessions 63 and 75% of

.updates, respectively, for the two values of r .
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6. COMPARING THE MODEL’S IMPLICATIONS TO
THE DATA

Industry Data

It is well known that aggregate labor input and productivity are procycli-
Žcal labor and productivity growth are each significantly positively corre-

.lated with real output growth . I find that this also holds true for most of
the 449 manufacturing industries in the NBER Manufacturing Productivity
Database over the period 1960]1990. The 1960]1990 correlations between
growth in hours worked and output growth for each industry average 0.72
across the 449 industries. They have a standard deviation of 0.18 and range
from y0.03 to 0.98. The correlations between TFP growth and output
growth average 0.75, have a standard deviation of 0.14, and range from
0.14 to 0.96. A less well-known empirical regularity is a low correlation
between hours growth and productivity growth. Christiano and Eichen-

w xbaum 13 find correlations of y0.20 and 0.16 between aggregate produc-
tivity and household and establishment survey hours. This pattern also
holds in most of the 449 manufacturing industries. In 443 of the 449
industries the productivity]hours correlation is lower than the productiv-
ity]output correlation. The productivity]hours correlations average 0.40,
while the productivity]output correlations average 0.75.

Christiano and Eichenbaum stress that technology-shock driven models
imply productivity]hours correlations above 0.90 with standard errors
around 0.10. These authors push the correlation toward zero by adding
government consumption shocks, which affect hours without affecting
TFP. They meet with modest success, pushing the correlation down to 0.57.
One could drive the TFP]hours correlation still lower by adding more

Ždemand and input price shocks. Yet models with variable work effort e.g.,
w x. ŽBils and Cho 11 and variable capital utilization e.g., Bils and Klenow

w x.12 imply that demand and input price shocks move measured productiv-
ity in the same direction as hours. Adding an impulse or propagation
mechanism that pushes hours and productivity in opposite directions seems
necessary to fit the facts.

The sequence of bounded learning curves modeled here represents a
strong mechanism pushing hours and productivity in opposite directions.
When a firm updates its technology, its productivity falls and its labor
input rises. Labor input rises because, although the ‘‘static’’ marginal
product of labor is low, the ‘‘dynamic’’ marginal product is high because of
the healthy gains in future productivity arising from the initial steepness of
the learning curve.12 As the firm accumulates experience with the vintage,

12 By ‘‘static’’ is meant the current period marginal revenue product of labor. By ‘‘dynamic’’
is meant the static plus the discounted present value of resulting future gains in the marginal
revenue product of labor.
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productivity rises but labor input falls. Labor input falls because the
learning curve flattens. In short, learning by doing separates the ‘‘static’’

Ž .marginal product of labor which is highly correlated with TFP from the
Ž .‘‘dynamic’’ marginal product of labor which incorporates learning .

ŽTable V provides correlations for the baseline model with parameter
.values given in Table II . Panel A of Table V is for the case with no

demand shocks, and panel B is for the case with the estimated demand
shocks. The first entry shows that growth of labor input and growth of

Žoutput are highly positively correlated 0.82 and 0.79 in the respective
.panels . In updating quarters, despite the TFP drop, labor input and

output rise as firms take advantage of the steep learning curve. As
experience accumulates, labor input and output fall, and TFP rises. Labor

Žinput is almost the mirror image of TFP correlations y0.86 and y0.89 in
.the respective panels . The correlations between output growth and TFP

Ž .growth are also negative y0.44 in both panels , but substantially less so
than the correlations between labor growth and TFP growth. The model
matches the pattern of lower productivity]hours correlations than produc-
tivity]output correlations. The levels of the model correlations are too
low, however, relative to their industry averages counterparts, which are

Ž .0.40 and 0.75. But the model here has no within-technology productivity
shocks; adding them would naturally push the correlations upward. Adding
variable utilization of labor would push the correlations up further. Com-
bined with productivity shocks and variable utilization, a sequence of
bounded learning curves could generate lower, more realistic correlations
between hours and productivity.

Plant Data

w xA number of recent studies, such as Dhrymes 17 , Baily, Hulten, and
w x w x w xCampbell 4 , Bartelsman and Dhrymes 9 , and Dwyer 20 , document

features of U.S. manufacturing plants in the Census Longitudinal Re-

TABLE V
Correlations between Output, Labor, and TFP

Ž . Ž .D ln Y D ln N

A. Without demand shocks

Ž .D ln N 0.82
Ž .D ln TFP y0.44 y0.86

B. With demand shocks

Ž .D ln N 0.79
Ž .D ln TFP y0.44 y0.89
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search Database. In interpreting their findings, it is important to be
conscious of sample selection. Suppose, for example, that the samples are

Ž .unbalanced plants entering and exiting , that productivity is fixed at each
plant, and that plants with higher productivity have lower exit rates. Then,

w xas in Jovanovic 29 , plant productivity rises with plant age even though
there is no learning whatsoever. In the following I will therefore stress

Žwhen the facts apply to continuously operating plants i.e., balanced
.panels . Balanced panels entail selection of continuously surviving plants,

however, and long-time survivors might have rising productivity relative to
exiters and entrants. Clearly, the model in this paper does not adequately
address exiters or entrants and how their behavior differs from continu-
ously operating plants.13

Given the model’s feature that only one technology can be used at a
time, the plant seems to be the appropriate unit of empirical observation.
Although one might be skeptical that existing plants adopt new technolo-
gies, many new technologies do not require building a new plant from

w xscratch. In support of this claim, Dunne 19 finds that plant age and
Žtechnology use measured by the Census Survey of Manufacturing Tech-

.nology are virtually uncorrelated in U.S. manufacturing, and Doms and
w xDunne 18 document a pattern of ‘‘investment spikes’’ or bunching of

equipment investment in 1 or 2 years of a 16-year span of a manufacturing
plant’s life, suggestive of incumbent plants updating their technologies.

w x ŽI now focus on Baily et al.’s 4 study of Census year data 1963, 1967,
.1972, 1977, and 1982 for 23 four-digit industries because its industry

Žcoverage is much broader than that of the other studies. For stayers firms
.in the sample in adjacent Census years , some of the relevant Bailey et al.

findings are:

1. ‘‘Plant-level fixed effects in productivity are persistent’’ over 5-
and 10-year intervals. This is clearly inconsistent with the model, which has
firms cycling through the productivity distribution. Thus the model would
need to be modified to include permanent sources of plant heterogeneity
alongside the updating.

2. ‘‘There is rather weak evidence for plant vintage effects.’’ This is
consistent with the model, in which plants are updating their technologies
so that old firms do not necessarily have older technology. As Baily et al.
state, ‘‘Old plants invest in new equipment and acquire new technology

13 Ž .The model’s implication that firms update technology in booms to learn rapidly could
Žhelp explain why entry rates are higher in booms presuming entrants are using technology

.new to them . Learning by doing combined with uncertain demand might then explain entry
w xwaves, as documented, for example, by Gort and Klepper 25 .
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that way.’’ Note that because the sample is of stayers, this result is not
driven by the departure of young, unproductive plants.

w x3. ‘‘Large offsetting effects on industry productivity come from the
plants that are moving up rapidly in the distribution and from the plants
that are falling rapidly’’ over 5-year intervals. This is consistent with the
model’s prediction that, in the absence of full synchronization, firms will
cycle in their productivity position}falling when they adopt a technology,
rising as they gain experience operating it, then falling again as their
technology becomes old relative to other firms.

Baily et al. also find that new plants have below-average productivity but
tend to catch up. They report that part of this is because lower productivity
plants exit, leaving the higher productivity entrants as the survivors, as in

w xJovanovic 29 . But they also report that surviving entrants’ TFP-grows
more rapidly than the average for incumbents. Presuming that new plants
are using technology which is new to them, this finding is consistent with a
startup period of low productivity followed by rapid learning.

In¨estment Spikes and the Procyclicality of In¨estment

In the model technology updates are not necessarily embodied in
physical capital. But many changes in technology do involve new physical
capital, such as those in the 1988 Survey of Manufacturing Technology
conducted by the U.S. Census Bureau. This survey, described in Dunne
w x19 , focused on new factory automation technologies such as pro-
grammable controllers, computer-automated design, and numerically
controlled machines. In the case of information technology, equipment
acquisition appears to be a necessary condition for technology adoption
Ž w x.see, for example, Yorukoglu 36 .

Although the model set out in Section 2 did not explicitly involve new
capital, one could reinterpret some fraction of the TFP drop after technol-
ogy updates as new investment, with TFP appropriately revised upward.
For the interpretations to be truly isomorphic, the firm must invest more
the earlier it adopts a technology of a given vintage. This certainly seems
plausible in the case of computers, and for equipment more generally in

Žlight of the downward trend in the relative price of equipment see
w x. w xGreenwood, Hercowitz, and Krusell 26 . Moreover, Bahk and Gort 3

estimate that, because of embodied technological change, each 1-year
change in the vintage of equipment is associated with a 2.5]3.5% change
in output.14 This is in line with m s 2.5% here for the rate of frontier
technology advance.

14 w xSee also Gort, Bahk, and Wall 24 .
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Under an equipment interpretation, the prediction of the model that
updating occurs more often in booms than in recessions seems a decided
advantage over models with updating concentrated in recessions. As is well
known, investment is procyclical at the aggregate and industry level, and

w xDoms and Dunne 18 document that investment spikes at the manufactur-
ing plant level are highly procyclical. As discussed earlier, the key force in
the model tilting updating toward booms is that learning is by doing.
Learning by doing makes updating in periods of high demand attractive, as
high output rates have the by-product of faster learning.15 If, as in Cooper

w xand Haltiwanger 16 , learning required time rather than doing, firms
would prefer to work out the bugs of new technologies in recessions rather
than in booms.16 Thus, along with considerable micro evidence, the strong
procyclicality of investment points to learning by doing.

w xA related topic is Goolsbee’s 22 study of aircraft retirement. He finds
that airlines are more likely to retire aircraft in a recession. The assump-
tion that retirement of old aircraft is synonymous with upgrading to new

w xaircraft seems highly questionable, however. As Goolsbee and Gross 23
Žshow, purchases of new aircraft are highly procyclical and lumpy, as

.predicted by the model of technology updating here . In a typical recession
firms increase retirement and reduce new aircraft purchases. Thus Gools-
bee’s evidence on aircraft retirements does not contradict the model here.

7. CONCLUSION

Micro evidence suggests that productivity gains from learning by doing
diminish as experience accumulates with a technology. It also suggests that
the learning may be largely specific to each production technology. I build
these features into a model of a firm deciding when to update its technol-
ogy. The model implies that the firm’s productivity falls when it adopts a
new technology, but grows quickly as the firm acquires experience with the
new technology. The model further implies that firms accelerate technol-
ogy adoptions during peak periods and delay them during trough periods.
The intuition for this property of the model is that peak periods mean lots
of doing and therefore lots of learning.

15 w xPower 33 finds that plant productivity growth is rapid after investment spikes, consis-
tent with a burst of learning after technology updating. She also finds a falling probability of
an investment spike with years since the last spike. Controlling for m, my model predicts a
rising hazard rate. It is possible, however, that there are large differences in m which
generate a falling hazard rate. Moreover, in the data there are ‘‘spikelets’’ in years adjacent
to spikes, which could result from a single spike straddling two calendar years.

16 w xParente 31 also features learning with time, rather than with cumulative output, so his
model too would imply updating during recessions.
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I find that the model may help explain features of U.S. manufacturing
industries from 1960 to 1990, as well as some properties of plant level data
reported in other studies. The model has a mechanism driving down the
correlation between hours and productivity toward that observed in the
data. It also implies that entrants have below-average productivity but
quickly gain on the productivity of incumbent firms, again consistent with

Žthe evidence with the evidence holding up even when confined to those
.plants which survive a long time . Finally, if the model is interpreted as

involving substantial investment at the time of updating, it may help
explain the procyclicality of investment at the aggregate, industry, and
plant levels, including the investment spikes observed at manufacturing
plants.
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