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Abstract
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1. Introduction

The trade elasticity (i.e., the elasticity of trade with respect to trade costs) is a crucial statistic for the

gains from trade (Arkolakis, Costinot and Rodríguez-Clare, 2012) (henceforth ACR). In workhorse trade

models such as Krugman and Melitz-Pareto the trade elasticity is a constant pinned down by a single

structural parameter. In the Krugman (1980) model firms sell in every destination and all variation in

bilateral trade flows is on the intensive margin (i.e., average exports per firm), so the trade elasticity is

the constant elasticity of substitution across products (minus one). Melitz (2003) brings the extensive

margin to life with fixed costs of exporting, and emphasizes the importance of selection of firms into

exporting. In a popular version of the Melitz model with a Pareto distribution of productivity introduced

by Chaney (2008), average exports per firm is constant and all variation in bilateral trade flows is along

the firm extensive margin — implying the trade elasticity is given by the Pareto shape parameter.

These stylized models have been criticized for being more tractable than realistic. The implication

that all variation in bilateral trade flows happens along either the intensive or the extensive margins is

clearly extreme and unlikely to be consistent with data. And, if both margins are operative, then the trade

elasticity need not be constant. Head, Mayer and Thoenig (2014) and Melitz and Redding (2015) explore

non-Pareto productivity distributions and show that they generate variation in the trade elasticity across

countries and time, with potentially important implications for the gains from trade. Does their critique

have empirical bite? Do deviations from the constant-elasticity polar models which better fit the data

result in starkly different gains from trade?

We tackle these questions in three steps. First, we exploit firm-level export data for a large set of coun-

tries to investigate whether we are anywhere close to the all-intensive-margin or all-extensive-margin ex-

tremes implied by the Krugman and Melitz-Pareto models. We find that the two margins have a roughly

equal role to play in accounting for the variation in bilateral trade flows. Second, we show that, when

paired with a lognormal distribution of firm productivity, the Melitz model is entirely consistent with

the empirical patterns we observe. Finally, we study the welfare effects of trade liberalization in our es-

timated Melitz-lognormal model and find them to be quite close to those in the standard Melitz-Pareto

model. Despite the trade elasticity varying substantially across trade partners, the gains from trade do

not differ much from the Melitz-Pareto benchmark. Thus, the ACR framework provides a surprisingly

accurate approximation to the gains from trade even in a context in which the trade elasticity is variable

and both the intensive and extensive margins of trade are active.

To elaborate, we use the World Bank’s Exporter Dynamics Database (hereafter EDD) to systematically

examine the importance of the firm extensive and intensive margins in driving bilateral trade flows. The

EDD covers firm-level exports from 60 (mostly developing) countries to all destination countries in most

years from 2003 to 2013. For 50 of the countries, every firm’s exports to each destination in a given year
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can be broken down into HS 6-digit products.1 Having many origin and destination countries enables

us to study firm margins while allowing for origin-year and destination-year fixed effects that control

for differences in population, wages, and other country characteristics.2 We find that between 40 and

60 percent of the variation in exports across origin-destination pairs is accounted for by the intensive

margin, with the rest accounted for by the extensive margin. This breakdown is robust to using different

country samples or sets of fixed effects, excluding country pairs with few exporters or tiny exporters,

and looking within industries. If we place exporting firms into percentiles for each trading pair and look

across pairs, the importance of the intensive margin in explaining overall exports rises steadily from

around 20 percent for the smallest exporters to over 50 percent for the largest exporters.

We interpret the finding that up to 60 percent of the variation in bilateral trade flows are explained by

the extensive margin as providing broad support for the Melitz (2003) model. But finding the intensive

margin accounts for at least 40 percent of variation — even allowing for origin-year and destination-

year fixed effects — contradicts the Melitz-Pareto model with fixed trade costs varying only because of

separate origin and destination components. In this model all variation in bilateral exports should occur

through the number of exporters (the extensive margin). Lower variable trade costs should stimulate

exports of a given firm, but draw in marginal exporting firms to the point that average exports per firm

(the intensive margin) is unchanged. This exact offset is a special property of the Pareto distribution.3

We explore several potential explanations for the prominent intensive margin in the EDD data while

retaining a Melitz-Pareto core, namely fixed trade costs that vary across country pairs, multi-product

firms, and firm granularity. We do this because Melitz-Pareto has become an important benchmark

model in international trade. It is consistent with many firm-level facts (Eaton et al., 2011), generates a

gravity equation (Chaney, 2008), and yields a simple summary statistic for the welfare gains from trade

(Arkolakis et al., 2012). Unfortunately, none of the extensions of the Melitz-Pareto model that we consider

fits the intensive margin stylized facts that we uncover with the EDD, so we drop the Pareto assumption of

firm productivity and adopt instead a lognormal distribution. Head, Mayer and Thoenig (2014) analyze

how the welfare gains from trade in the Melitz model differ with a lognormal instead of a Pareto distribu-

tion. Bas, Mayer and Thoenig (2017) show how the trade elasticity varies with a lognormal distribution.

Both papers marshal evidence from firms in France and China in favor of the lognormal distribution.

1See Fernandes, Freund and Pierola (2016) for a detailed description of the dataset.
2Most firm-level empirical trade studies have one or at most a few exporting countries. Bernard, Jensen, Redding and Schott

(2007) decompose exports from the U.S. to other countries. Eaton, Eslava, Kugler and Tybout (2008) analyze firm-level exports
for Colombia, Eaton, Kortum and Kramarz (2011) do so for France, Eaton, Kortum and Sotelo (2012) for Denmark and France,
Manova and Zhang (2012) for China, and Arkolakis, Ganapati and Muendler (2021) for Brazil, Chile, Denmark and Norway.

3This property of the Melitz-Pareto model extends to environments with demand and fixed costs that are idiosyncratic to
firm-destinations (Eaton et al., 2011); convex marketing costs (Arkolakis, 2010); non-CES preferences (Arkolakis, Costinot, Don-
aldson and Rodríguez-Clare, 2019); non-monopolistic competition (Bernard, Eaton, Jensen and Kortum, 2003), and multina-
tional production (Arkolakis, Ramondo, Rodríguez-Clare and Yeaple, 2018).
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We consider a Melitz model with demand and fixed trade cost shocks that are specific to each firm-

destination, as in (Eaton et al., 2011), but with a firm productivity distribution that is lognormal rather

than Pareto. In particular, we assume that each firm is characterized by a productivity parameter, an

idiosyncratic demand shifter, and a fixed cost for each destination market, all drawn from a multivariate

lognormal distribution. We allow for a non-zero covariance between the demand shifter and the fixed

cost in each destination, but set all other covariances to zero. One appealing feature of this setup is

that it is amenable to likelihood estimation methods. As the likelihood may not be a concave function

of the parameters, and since we have a large number of parameters to estimate (means, variances, one

covariance, and trade costs), we rely on the estimation methodology by Chernozhukov and Hong (2003).

Our estimation shows that a lognormal distribution for firm productivity can successfully generate a

sizable intensive margin elasticity. When variable trade costs fall and fixed costs are constant, the pro-

ductivity cutoff falls and the ratio of mean to minimum exports per firm increases under the lognormal

distribution (while being constant under Pareto).4 As in the data, the intensive margin elasticity rises

steadily with the size percentile of exporters under a lognormal productivity distribution.

We finish by studying the implications of our empirical findings for the impact of trade liberaliza-

tion. We show how to extend the Dekle, Eaton and Kortum (2008) “exact hat algebra” to a Melitz model

with a general distribution of firm-level productivity, fixed export costs, and destination-specific demand

shifters. We then compute the effects of changes in trade costs on trade flows and welfare in our full

Melitz-lognormal model. We compare these effects to those in the standard Melitz-Pareto model with

the Pareto shape parameter estimated to fit the average trade elasticity implied by our estimated Melitz-

lognormal model. The welfare effects of trade liberalization in this Melitz-Pareto approximation are very

close to those in the Melitz-lognormal model, although the effects on trade flows do differ significantly.5

Our counterfactual analysis is related to Head et al. (2014) and Melitz and Redding (2015). Using a

lognormal distribution and a bounded-Pareto distribution, respectively, they show that the trade elas-

ticity is not constant across countries or time. They then draw implications for the welfare effects of

trade in calibrated symmetric two-country models. Our conclusion — that the Melitz-Pareto model of-

fers a good approximation to the welfare effects when the data generating process is our estimated full

Melitz-lognormal model — is consistent with the finding in Head et al. (2014) that their “macro-data

approach” to calibration leads to similar results across the lognormal and Pareto models. In contrast,

Melitz and Redding (2015) show that the formula proposed in Arkolakis et al. (2012) to compute welfare

4The intensive margin comes alive under other thin-tailed productivity distributions, such as bounded Pareto as in Feenstra
(2018). However, a bounded Pareto distribution loses the analytical convenience of the unbounded Pareto while lacking the
estimation convenience of the lognormal distribution.

5Our approach and findings bear some resemblance to those in contemporaneous work by Head and Mayer (2019). They
consider a model with rich patterns of substitutability across varieties and variable markups as the true data generating pro-
cess and explore the extent to which counterfactuals differ if one wrongly estimates and applies a simple CES-monopolistic
competition model on the generated data. They find that the CES model serves as a very good approximation.
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changes given changes in trade shares (their formula for “ex-post welfare evaluation”) is no longer ac-

curate if the Pareto productivity distribution is bounded from above. We find the Melitz-Pareto model

to be a good approximation because variation in the trade elasticity is much smaller in our full Melitz-

lognormal model estimated on the EDD data than in their symmetric Melitz model with a truncated

Pareto distribution calibrated to match the relative size of exporting and non-exporting U.S. firms.6

To recap, this paper makes several contributions to the literature. First, we use the EDD to establish a

new stylized fact, namely that between 40% and 60% of the variation in exports across country pairs takes

place along the intensive margin, with this margin being important all along the firm-size distribution.

Second, we show that the Melitz-Pareto model cannot match this fact, even allowing for a number of

extensions. Third, we show that a lognormal firm productivity distribution generates a positive role for

the intensive margin as required by the data. Fourth, we use likelihood methods to estimate a Melitz

model with a lognormal distribution for productivity plus idiosyncratic demand shocks and idiosyncratic

fixed costs. Finally, we extend the exact hat algebra approach to a generalized Melitz model and use it

explore counterfactual trade flow and welfare implications in Melitz-lognormal versus Melitz-Pareto.

The rest of the paper is organized as follows. Section 2 describes the EDD data and documents the

importance of the extensive and intensive margins in export variation. Section 3 contrasts the EDD facts

with the predictions of the Melitz-Pareto model (with a continuum of single product firms, multi-product

firms, or a finite number of firms). Section 4 shows how the intensive margin in the Melitz model changes

when we drop the Pareto assumption and instead assume that the firm productivity distribution is log-

normal. Section 5 gauges the impact of trade cost shocks using “exact hat algebra.” Section 6 concludes.

2. The Intensive Margin in the Data

The Exporter Dynamics Database

We use the EDD described in Fernandes et al. (2016) to study the intensive and extensive margins of

trade. The EDD is based on firm-level customs data covering the universe of export transactions pro-

vided by customs agencies from 59 countries (53 developing and 6 developed countries) that we com-

plement with data for China.7 For each country, the raw firm-level customs data contains annual export

flows (in current values) disaggregated by firm, destination and Harmonized System (HS) 6-digit prod-

uct. Oil exports are excluded due to lack of accurate firm-level customs data for many of the oil-exporting

countries. For most countries total non-oil exports in the EDD are close to total non-oil exports reported

in COMTRADE/WITS. For the descriptive analysis in this section as well as for the regression and simu-

6Our paper is also related to Adao, Costinot and Donaldson (2017), who extend the exact-hat algebra approach to a setting
with a variable trade elasticity due to variation in the elasticity of demand.

7China is not included in the publicly available EDD statistics due to confidentiality concerns.
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lation work in the sections that follow, we focus on a core sample that consists of 50 countries (49 from

the EDD and China) for which we have the firm-level data. However, for the motivating plots below we

use an extended sample that includes 60 countries (59 from the EDD plus China). Both samples cover a

subset of years between 2003 and 2013 — see Tables 1 and A1 in the Online Appendix.

We focus on EDD products in the manufacturing sector.8 We calculate variants of average exports per

firm, number of exporting firms, and total exports at the origin-destination-year level or at the origin-

product-destination-year level. The product disaggregations that we use are HS 2-digit for the extended

sample and HS 2-digit, HS 4-digit, or HS 6-digit for the core sample.

Importance of the intensive margin

Let Xi j , Ni j and xi j ≡ Xi j /Ni j denote total exports, total number of exporting firms, and average exports

per firm from country i to country j , respectively.9 In Figure 1 we plot the intensive margin (ln xi j )

and extensive margin (ln Ni j ) vs. total exports (ln Xi j ) for the extended sample of countries. We restrict

the sample to the origin-destination pairs with more than 100 exporting firms (i.e., i j pairs for which

Ni j > 100) to reduce noise associated with country pairs with few exporting firms.10 All variables plotted

are demeaned of origin-year and destination-year fixed effects. Each dot corresponds to (ln xi j , ln Xi j )

(Panel A) or (ln Ni j , ln Xi j ) (Panel B). The lines can be ignored for now.

A key statistic that we use to summarize the pattern observed in Figure 1 is the intensive margin

elasticity (IME), which is the slope of the (not shown) regression line in Panel A. In a given year, the IME

can be obtained from an OLS regression of ln xi j on ln Xi j with origin and destination fixed effects:

ln xi j = F E o
i +F E d

j +α ln Xi j +εi j . (1)

The IME is the estimated regression coefficient

α̂= cov(ln x̃i j , ln X̃i j )

var
(
ln X̃i j

) , (2)

where we write ln z̃i j to denote variable ln zi j demeaned by origin-year and destination-year fixed effects.

The complement of the IME is the extensive margin elasticity, defined as EME ≡ cov(ln Ñi j ,ln X̃i j )

var (ln X̃i j )
. The EME

is the slope of the (not shown) regression line in Panel B of Figure 1 and satisfies EME = 1− IME.

Figure 1 demonstrates that both the IME and the EME are positive and large. As shown in Panel A

8Concording the ISIC rev. 3 and HS 6-digit classifications, we consider only exports of HS 6-digit products corresponding to
ISIC manufacturing sub-sectors 15-37.

9While there is variation in our data over time, for simplicity, we suppress the time subscript in our variables.
10The core sample includes 1,305 unique country pairs with Ni j > 100 while the extended sample includes 2,087 unique

country pairs with Ni j > 100. The total number of unique country-pairs is 8,401 in the core and 10,663 in the extended sample.
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of Table 2, depending on the type of fixed effects included, the IME ranges from 0.4 to 0.46 in the core

sample that we will use for the analysis in the next two sections. Our preferred estimate of the IME is 0.4

based on the inclusion of origin-year and destination-year fixed effects (as in Figure 1).11 In this estimate,

the intensive margin accounts for approximately 40% of the variation in total exports across country

pairs, while 60% is accounted for by the extensive margin. As the focus has so far been on accounting for

the variation in bilateral trade flows while controlling for origin-year and destination-year fixed effects,

it is natural to wonder how much of that variation is absorbed by the fixed effects alone. The results

in Table 2 show that this is never more than 59 percent, implying that a large share of the variation in

bilateral trade flows comes from the forces behind the estimated IME.12

Robustness

The finding of a positive and large IME is robust to considering different samples, adding industry con-

trols, dealing with measurement error, and looking only at variation over time. Here we provide an

overview of the results, with details left to Online Appendix B.

First, we obtain the IME for (i) a sample including all country pairs and the estimate is 0.58 when

origin-year and destination-year fixed effects are included (Panel B of Table 2); (ii) the extended sample

and the estimate is 0.38; (iii) a sample that excludes firms whose annual exports fell below $1,000 in

any year to ensure the IME is not driven by small exporting firms and the estimate is 0.4 for the core

sample and 0.38 for the extended sample; (iv) each year from 2003 to 2013 separately and the estimates

range from 0.55 to 0.60; and (v) separately for higher-income and lower-income countries or for different

continents and the estimates are similar.13

Second, we address the possibility that the IME estimates could be affected by country differences

in industry composition of exports combined with industry differences in average exports per firm. The

IME actually increases when moving to industry-level data: at the lowest level of aggregation (HS 6-digit),

the IME is 0.51 for the core sample with origin-year-industry and destination-year-industry fixed effects,

and it is 0.52 for the extended sample at the HS 2-digit level.14

Third, measurement error could be a concern for our IME estimates. Since total exports is the sum

of firm-level exports, classical measurement error in exports per firm x would bias the IME upward, but

classical measurement error in the number of firms N would bias the IME downward. If measurement

11We estimate ln xi j t = F E o
i t +F E d

j t +α ln Xi j t +εi j t using all available years of data for the core sample country pairs.
12Based on the R2 of OLS regressions of log bilateral total exports (ln Xi j t ) on origin-year and destination-year fixed effects.
13The IMEs in (iii) are obtained for origin-destination pairs with at least 100 exporting firms and with origin-year and

destination-year fixed effects. The corresponding IMEs for all country pairs are 0.57 using the core sample and 0.51 using
the extended sample.

14The presence of large trading firms could increase both exports per firm and total exports and explain our IME estimates.
While we are unable to identify large trading firms in the EDD data, we estimate the IME for a sample including only HS 2-digit
industries with low shares of firms exporting via intermediaries, as defined in Chan (2019). The results barely change.
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error is serially uncorrelated, then instrumenting total exports with its leads and/or lags should yield an

unbiased estimate of the IME. The instrumented IMEs are very close to the OLS IMEs.

Finally, as an alternative to the use of cross-sectional variation in bilateral trade flows to estimate

the IME, we can exploit only time-series variation in bilateral export flows. The results from regressions

that include origin-destination fixed effects or regressions in first-differences (where the IME is identi-

fied only off the panel dimension) for the core and the extended sample show significantly larger IMEs

(around 0.85) than those obtained exploiting cross-sectional variation in Table 2. This time series ev-

idence shows clearly that the intensive margin plays an important role for changes in bilateral export

flows (see Online Appendix B).

IME by percentiles

A positive IME could be due to the presence of export superstars that increase both average exports per

firm and total exports for some country pairs, as discussed in Freund and Pierola (2015). We study this

possibility by considering separate IME regressions for each exporter size percentile. For each origin-

destination-year combination we distribute the exporting firms into percentiles based on the value of

their exports. Denoting average exports per firm in percentile pct as xpct
i j , we run regressions based on

the following specification:

ln xpct
i j = F E o

i +F E d
j +αpct ln Xi j +εi j .

We define the IME for each percentile as IMEpct ≡ α̂pct .15 We plot the IMEpct for each percentile (with

confidence intervals) in Figure 2 along with the horizontal line at the overall IME of 0.4. The IME is 0.5

for the highest percentile. But the positive overall IME is not coming exclusively from the export super-

stars: the IMEpct rises steadily from 0.2 at the 50th percentile to 0.3 at the 80th percentile.16 The IME by

percentile is robust to country differences in industry composition of exports and industry differences

in average exports per firm across percentiles, as shown in Online Appendix B.

IME for multi-product firms

We can dig deeper and study whether average exports per firm can be explained by the number of prod-

ucts exported per firm or by exports per product per firm.17. Let Oi j be the total number of firm-product

observations with positive exports from i to j and let xp
i j ≡ Xi j /Oi j be the average exports per product

per firm exporting from i to j . We define the IME at the product level as IMEp ≡ cov(ln x̃p
i j , ln X̃i j )/var (ln X̃i j ).

15For exporter percentiles to be well-defined we focus on country pairs for which Ni j > 100.
16Only the top percentile, in which there is a large share of exports, lies above the overall IME.
17Details on the multi-product extension of the Melitz-Pareto model are given in Online Appendix D.
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Let mi j = Oi j /Ni j be the average number of products per firm exporting from i to j . Then, the IME is

equal to the IMEp plus the extensive product margin elasticity,

IME = IMEp + cov(lnm̃i j , ln X̃i j )

var (ln X̃i j )
.

Results from a regression of log average exports per product on log total exports including origin-year

and destination-year fixed effects reveal an IMEp of 0.29 for the core sample as shown in Online Ap-

pendix B. This implies that most of the IME is explained by the systematic variation in average exports

per product per firm, rather than in the average number of products exported.18

Taking stock: the IME in the EDD

Summarizing the results so far, we find the intensive margin elasticity to be positive and significant, both

statistically and economically. This finding is robust to the inclusion of a variety of fixed effects, various

samples, exclusion of small firms, and disaggregation by industry. The IME is positive and monotonically

increasing across the whole distribution of exporter size. The systematic cross-country-pair variation of

average exports per firm comes primarily from the behavior of average exports per product per firm.

Correlation between the intensive and extensive margins, and their relation with distance

We now move beyond the intensive margin elasticities and report additional stylized facts on the corre-

lations between the intensive margin, the extensive margin, and distance. There is a positive and sig-

nificant correlation between average exports per firm and the number of exporting firms (0.25, standard

error 0.01) after taking out origin-year and destination-year effects. Table 3 shows how these margins

vary with log distance with alternative sets of fixed effects. The elasticities are all negative and significant

when controlling for origin-year and destination-year fixed effects: average exports per firm, the num-

ber of firms, average number of products exported per firm, and average exports per product per firm

all decline with distance between trade partners. Average exports per firm declines with distance even

when disaggregated at the HS 2-digit, 4-digit, or 6-digit levels controlling for origin-year-industry and

destination-year-industry fixed effects (see Online Appendix B).

Relation to previous empirical results

We finish this section by relating our stylized facts to those of EKK, EKS, Bernard et al. (2007) and Bernard

et al. (2009). EKK use firm-level export data for a single origin (France) and show that average exports per

18Bernard et al. (2009) present a similar decomposition for U.S. exports. We compare their results to ours below.
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firm increase with market size of the destination (measured as manufacturing absorption) with an elas-

ticity of 1/3. In our case, a regression of average exports per firm on destination market size, including

origin and year fixed effects reveals that average exports per firm increase with destination market size

with an elasticity of 0.19, a bit lower than the result in EKK.

EKK also show that firms exporting to more destinations exhibit higher sales in the domestic (French)

market. Our data does not include domestic sales, but we can look at sales in the most popular desti-

nation market for each origin. Let xi l | j denote average exports to destination l computed across firms

from i that sell in markets l and j and let l∗(i ) ≡ argmaxk Ni k be the most popular destination market

for each origin country i (e.g., the United States for Mexico). We regress log
xi l∗(i )| j

xi l∗(i )|l∗(i )
on log

Ni j

Ni l∗(i )
for all i

and j for the core sample with origin-year and destination-year fixed effects. The pattern shown in EKK

for French firms extends to our data with many origin countries: firms that sell in more markets are more

productive as proxied by their sales in their origin country’s most popular destination market.19

EKS find that average exports per firm are similar across four origin countries (Brazil, Denmark,

France and Uruguay). They regress average exports per firm on origin and destination fixed effects and

find that the origin fixed effects differ little across their four origins. Running the same regression in

our dataset (but pooling across years and including year fixed effects), we find that origin fixed effects

do vary significantly across countries (the coefficient of variation in the estimated origin fixed effects

ranges from 0.81 to 2.56, depending on the sample used) and are higher for countries with higher GDP

per capita and higher total exports.20 Moreover, origin-year and destination-year fixed effects are not

enough to capture the variation in ln xi j : a regression of ln xi j on origin-year and destination-year fixed

effects yields an R-squared of 0.59 when only country pairs with Ni j > 100 are considered and only 0.5

when all country pairs are considered (see Table 2).

Using firm-level export data for the U.S., Bernard et al. (2009) present a similar decomposition to the

one we present above for multi-product firms, except that they cannot allow for destination fixed effects

because their data is for a single origin in a single year. They find that IMEp is around 0.23, which is not

far from our estimate of 0.29. Using similar data, Bernard et al. (2012) show that average exports per

product per firm increase with distance but the coefficient is insignificant. In contrast, as shown in the

bottom half of Table 3, our regressions of ln xp
i j on lndisti j with origin-year and destination-year fixed

effects yield a negative and significant coefficient on distance. A negative coefficient on distance is also

found when regressing ln xi j on lndisti j , as seen in the top half of Table 3.

19The EKK estimating sample includes only firms with sales in France. To implement an approach comparable to theirs, we
drop all firms from country i that do not sell to l∗(i ), so the sample includes only Ni l∗(i ) firms for country i . This implies that
all firms that make up Ni j are also selling to l∗(i ). See Online Appendix F.

20We regress the estimated origin fixed effects on population, GDP, GDP per capita, and total exports, jointly and separately.
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3. The Intensive Margin in the Melitz Model

In this section we study the implications of the Melitz model for the intensive margin of trade. We find

that if firm-level productivity is drawn from a Pareto distribution then the model generates predictions

that are odds with the facts presented in the previous section. Allowing for multi-product firms or granu-

larity does not help the Melitz-Pareto model better match the intensive margin facts, while moving from

a Pareto to a lognormal distribution does.

3.1. Preliminaries

As this is a well-known model, we will be brief in the presentation of the main assumptions. There are

many countries indexed by i , j . Labor is the only factor of production available in fixed supply Li in

country i and the wage is wi . Preferences across varieties are constant elasticity of substitution (CES)

with elasticity of substitution across varieties σ > 1. In each country i there is a large pool of firms of

measure Ni , each producing a single variety sold under monopolistic competition with productivity ϕ

distributed according to cumulative distribution function (CDF) Gi (ϕ) and probability density function

(PDF) gi (ϕ). For convenience we will assume that gi (ϕ) > 0 for allϕ, so that Gi (ϕ) is everywhere increas-

ing and hence invertible. Firms from country i incur in fixed trade costs Fi j (in units of the numeraire)

and iceberg trade costs τi j to sell in country j . We do not need here to close the model and characterize

the full equilibrium. Instead, we derive a few equilibrium relationships that will be useful to understand

the model’s implications for the intensive margin of trade.

Sales in destination j by a firm from origin i with productivity ϕ are

xi j (ϕ) =
(
σ̄

wiτi j

ϕ

)1−σ
P 1−σ

j w j L j , (3)

where

P j =
(∑

i
Ni

∫
ϕ≥ϕ∗

i j

(
σ̄

wiτi j

ϕ

)1−σ
dGi (ϕ)

)1/(1−σ)

is the price index in j , σ̄ ≡ σ/(σ−1) is the markup, and ϕ∗
i j is the productivity cutoff for exports from i

to j , which is determined implicitly by

xi j (ϕ∗
i j ) =σFi j . (4)

The value of exports and the measure of firms in i that export to j are then as follows:

Xi j = Ni

∫
ϕ≥ϕ∗

i j

xi j (ϕ)dGi
(
ϕ

)
(5)
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Ni j = Ni

(
1−Gi (ϕ∗

i j )
)

, (6)

respectively. We will use ni j ≡ Ni j /N j to denote the share of firms in i that export to j and xi j ≡ Xi j /Ni j

to denote the associated average exports per firm.

The ratio of average to minimum exports per firm for each country pair can be written as

xi j

xi j (ϕ∗
i j )

=
(
ϕ̃i (ϕ∗

i j )

ϕ∗
i j

)σ−1

, (7)

where ϕ̃i (ϕ∗) is an average productivity level defined in Melitz (2003) as

ϕ̃i (ϕ∗) ≡
(

1

1−Gi (ϕ∗)

∫ ∞

ϕ∗
ϕσ−1gi (ϕ)dϕ

) 1
σ−1

.

Equations (4), (6) and (7) imply that

xi j =Ωi (ni j )σFi j , (8)

whereΩi (n) is a function defined as

Ωi (n) ≡
(
ϕ̃i (G−1

i (1−n))

G−1
i (1−n)

)σ−1

. (9)

We make two observations here that will be important below. First, the function Ωi (n) is completely

determined by σ and the CDF Gi (·). Second, given that G−1
i (1−n) is increasing, if ϕ̃i (ϕ∗)

ϕ∗ is decreasing in

ϕ∗ thenΩi (n) would be an increasing function.

3.2. The Intensive Margin

Without loss of generality, we can write variable and fixed trade costs as τi j = τo
i τ

d
j τ̃i j and Fi j = F o

i F d
j F̃i j .

Taking logs on both sides of equation (8) then yields

ln xi j = ln
(
σF o

i

)+ lnF d
i + lnΩi (ni j )+ ln F̃i j . (10)

Similarly, from equations (3), (4), (6) and (8) we get

ln xi j = ln(σ̄wi /τo)1−σ+ ln(P 1−σ
j w j L j /τd )1−σ+ ln

(
Ωi

(
ni j

)(
G−1

i

(
1−ni j

))σ−1
)
+ ln τ̃1−σ

i j . (11)

Imagine for now that var
(
ln F̃i j

) = 0, so that all variation in fixed trade costs comes from origin and

destination fixed effects with no country-pair component, for example because Fi j ∝ wγ

i w1−γ
j , as in

Arkolakis (2010). If firm productivity is distributed Pareto, Gi (ϕ) = 1 − (
ϕ/bi

)−θ , with θ > σ− 1 and
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bi ≤ ϕ∗
i j for all i , j , then

(
ϕ̃(ϕ∗

i j )

ϕ∗
i j

)σ−1

= θ̄
θ̄−1

for all ϕ∗
i j , where θ̄ ≡ θ/(σ−1). This implies that Ωi (n) does

not vary with n and hence IME = 0 while EME = 1. This is captured in Figure 1 by the horizontal line

for the model-implied intensive margin (panel A) and the line with unit slope for the model-implied

extensive margin (panel B). These implications of the model stand in sharp contrast to what is seen in

the data, which reveals an IME of 0.4 or higher (see Figure 1 and Table 2).

One could certainly abandon the assumption that var
(
ln F̃i j

)= 0, while retaining the Pareto assump-

tion and allowing fixed trade costs to vary so as to match the findings in Section 2. However, the required

variation in fixed costs seems unreasonable. As discussed in the previous section, average exports per

firm decline with distance (see Table 3), so equation (10) implies that F̃i j would need to systematically

fall with distance. Setting θ = 5 from Head and Mayer (2014) and σ= 5 from Bas et al. (2017), we can use

equations (10) and (11) to compute the model-implied F̃i j and τ̃i j and relate these to distance. Table

4 shows the implied elasticity of F̃i j with respect to distance would be -0.28, while the corresponding

elasticity for τ̃i j would be 0.27. As suggested by these results, F̃i j would need to be negatively correlated

with τ̃i j to generate a positive IME, as shown formally in Online Appendix C. Intuitively, a positive IME

implies a positive covariance between average and total sales (disregarding origin and destination fixed

effects). Higher average sales go along with a higher F̃i j and so a positive IME would need a positive

covariance between F̃i j and total sales, which would require a negative covariance between F̃i j and τ̃i j .

To the best of our knowledge, there are no models that would microfound a negative correlation between

fixed and variable trade costs while also generating a positive correlation between fixed trade costs and

aggregate trade flows (as we see when we project on distance).21 Finally, variation in F̃i j does not prevent

another implication of the Pareto distribution that is at odds with the findings of Section 2, namely that

the IME calculated separately for each exporter size percentile would be the same as the overall IME:

IMEpct = IME, for all pct, in contrast to what is shown in Figure 2.22

These sharp and contrafactual implications of the Melitz-Pareto model all come from the fact that a

Pareto distribution implies that ϕ̃(ϕ∗
i j )/ϕ∗

i j does not vary withϕ∗
i j . In contrast, as argued in footnote 15 of

21Allowing for tariffs in addition to iceberg trade costs would naturally lead to a positive correlation between model-implied
variable and fixed trade costs. This is because a tariff affects trade flows both by increasing the price of the affected good,
as with iceberg trade costs, and by decreasing the net profits conditional on the quantity sold, as with fixed trade costs. See
Costinot and Rodríguez-Clare (2014), Felbermayr, Jung and Larch (2015), and Caliendo, Feenstra, Romalis and Taylor (2015).
Alternatively, one may consider models with endogenous transportation costs. In Anderson and Yotov (2020), capital specific
to transportation for each country pair implies that bilateral trade costs are increasing in bilateral trade flows (although this
effect would be weaker in the long run when capital can be adjusted to demand). By increasing trade flows, low fixed trade
costs could then lead to higher variable trade costs. A similar result may arise in Brancaccio, Kalouptsidi and Papageorgiou
(2020), where markups charged by shippers to exporters may increase with the number of exporters along any route. Contrary
to our results, however, these mechanisms would imply a positive correlation between fixed trade costs and trade flows.

22Exports of a firm in the p th percentile of the exporter size distribution are σFi j

(
ϕp /ϕ∗

i j

)σ−1
, where ϕp is such that

Pr
[
ϕ<ϕp |ϕ>ϕ∗

i j

]
= p. Since productivity is distributed Pareto, the ratio ϕp /ϕ∗

i j and thus average exports per firm in each

percentile should be the same for all i j pairs.
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Melitz (2003), ϕ̃(ϕ∗
i j )/ϕ∗

i j is decreasing inϕ∗
i j if the distribution gi (ϕ) “belongs to one of several common

families of distributions: lognormal, exponential, gamma, Weibul, or truncations on (0,+∞) of the nor-

mal, logistic, extreme value, or Laplace distributions. (A sufficient condition is that gi (ϕ)ϕ/(1−Gi (ϕ)) be

increasing to infinity on (0,+∞).)" To understand the implication of this property, consider a decline in

τi j , so that ϕ∗
i j decreases with no effect on minimum sales (which remain equal to σFi j ). The decline in

τi j leads to an increase in exports of incumbent firms (which increases average exports per firm) and en-

try of low productivity firms (which decreases average exports per firm). Under Pareto these two effects

exactly offset each other so there is no change in average exports per firm. In contrast, if productivity

is distributed in such a way that
ϕ̃(ϕ∗

i j )

ϕ∗
i j

is decreasing then the second effect does not fully offset the first,

and average exports per firm would increase with a decline in τi j . More directly, a decline in τi j leads to

an increase in ni j and since Ωi (n) is increasing then average exports also increase, implying a positive

correlation between total and average exports, and hence a positive IME even with var
(
ln F̃i j

)= 0.

A particularly convenient distribution in the family highlighted by Melitz (2003) is the lognormal

distribution. In the next section we consider a Melitz model with a lognormal distribution but extended

to allow for additional dimensions of firm heterogeneity that are important to match the microdata.

We then provide a rigorous estimation of the extended model and explore its implications for the IME.

For now, however, we can offer a quick preview of how simply moving from Pareto to lognormal can

significantly improve the fit of the Melitz model with the empirical patterns presented in Section 2.

Given values of the mean and standard deviation of productivity, µϕ,i and σ̄ϕ, as well as a value of Ni

for every country, we can use our data on Ni j to compute ni j = Ni j /Ni and Ω
(
ni j

)
for all country pairs

and then explore the implications of the Melitz-lognormal model for the intensive margin, as well as the

implied trade costs. We use the QQ-estimation proposed by Head et al. (2014) to obtain estimates of σϕ

and µϕ,i for every i and Bento and Restuccia (2017) data to estimate a value for Ni for all the countries

in our sample (see Online Appendix H for a detailed description).23,24 For our estimate of the shape

parameter, σ̄ϕ = 4.02, even with var
(
ln F̃i j

) = 0, the model’s implied IME is 0.28, which is not far from

what we found in the previous section.25

We can again use equations (10) and (11) to compute model-implied fixed and variable trade costs

23Using census, surveys and registry data, Bento and Restuccia (2017) compiled a dataset with the number of manufacturing
firms for a set of countries. Unfortunately, their sample has missing observations for a number of countries in the EDD. We
impute missing values projecting the log number of firms on log population. There is a tight positive relationship between log
number of firms in their dataset and log population with an elasticity of 0.945. We acknowledge slippage between theory and
data in that we obviously do not have a measure of the entry level Ni , but (at best) only the number of existing firms, which in

theory would correspond to
(
1−Gi (ϕ∗

i i )
)

Ni . We avoid this problem in the analysis of the next Section.
24We compute three sets of QQ-estimates of σ̄ϕ: for the full sample, the largest 50% of firms and the largest 25% of firms for

each origin-destination pair in each year. These estimates are higher than the estimate obtained by Head et al. (2014), so we use
the minimum among them, σ̄ϕ = 4.02, which corresponds to the subsample with the largest 25% of firms. See Online Appendix
H for a discussion of these estimates and their relation to the estimate in Head et al. (2014).

25If we instead use the estimate in Head et al. (2014) of σ̄ϕ = 2.4 then we get an IME of around 0.12.
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but now under the assumption that productivity is distributed lognormal. The correlations between the

implied values of F̃i j and τ̃σ−1
i j and distance are reported in Table 4. In contrast to our results with Pareto,

under lognormal both the model-implied variable and fixed trade costs are increasing with distance,

with elasticities of 0.3 and 0.16, respectively.

Finally, we can explore the implications of the Melitz-lognormal model for the IME by percentiles. As

shown in Figure 3, and in line with our findings in Section 2, the IME is positive and increasing across

percentiles, with most but not all the action at the highest percentiles.

3.3. Multi-Product Firms and Granularity

In this section we discuss whether maintaining the Pareto assumption but moving beyond the Melitz

model in other ways can improve its fit with the findings for the intensive margin of trade in Section 2.

Specifically, we consider two extensions of the Melitz-Pareto model: multi-product firms and granularity.

With multi-product firms as in Bernard et al. (2011), average exports per firm may fall along with

total exports (thereby creating a positive IME) as firms facing higher product-level fixed trade costs ex-

port fewer products (even though they export more per product). Roughly speaking, allowing for multi-

product firms implies that part of the extensive margin in the basic Melitz-Pareto model now operates

inside the firm and appears as part of the firm intensive margin in the data. As shown in Online Ap-

pendix D, however, under the Pareto assumption the effect of higher product-level fixed trade costs on

the number of products exported per firm is exactly offset by higher average exports per product, and so

the contrafactual results described above remain valid in this extension.

Dropping the assumption of a continuum of firms and allowing for granularity, as in Eaton et al.

(2012) or Gaubert and Itskhoki (2021), may generate a positive covariance between average exports and

total exports that could in theory explain our empirical findings for the IME. Intuitively, large exports by a

particular firm from country i to market j could lead to both high average exports and high total exports

from i to j . We explored this formally using the extension of the Melitz-Pareto model to allow for granu-

larity in Eaton et al. (2012), following two approaches described in Online Appendix E. First, we estimate

the elasticity of model-implied fixed trade costs with respect to distance taking into account granularity.

Although the distance elasticities are significantly lower than those estimated ignoring granularity, they

remain negative, so the fixed trade costs implied by the Melitz-Pareto model are still decreasing with

distance. Second, we simulate exports of Ni j firms for each of the country pairs in the sample and then

compute the implied IME under var
(
F̃i j

)= 0. Consistent with the intuition above, now the IME is posi-

tive but –under plausible values for the key parameters– an order of magnitude lower than that reported

in Section 2. Moreover, even if we push parameters to extreme values to get a realistic IME, all the action

explaining the positive IME would come from the superstar firms (with the IME being close to zero for
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small percentiles), a result contrary to Figure 2.

4. The Intensive Margin in an Extended Melitz-Lognormal Model

In Section 3 we found that the Melitz model does better in matching the facts presented in Section 2 when

we assume that firm productivity is distributed lognormal than when we assume that it is distributed

Pareto. Encouraged by those results, in this section we first present a Melitz model with lognormally-

distributed firm productivity, destination-specific fixed costs and demand shocks.26 We then describe a

maximum-likelihood approach to estimate the model using our firm-level microdata and finally study

the implications of the estimated model for the IME as well as for the model-implied trade costs.

4.1. Model

Our extended Melitz model is similar to that in Eaton et al. (2011) in that it allows for firm-specific fixed

trade costs and demand shocks that vary by destination. The main difference is that we assume that

firm productivityϕ, demand shocks, α, and fixed trade costs, f , are distributed jointly lognormal. A firm

from origin i with productivity ϕ, demand shocks (α1, ...,αJ ) and fixed trade costs ( f1, ..., f J ) would have

net profits from selling in market j given by α j Di jϕ
σ−1/σ− f j , where Di j ≡

(
σ̄wiτi j

)1−σPσ−1
j w j L j .

Without loss of generality, we allow mean log productivity to be origin-specific while imposing that

the mean of demand shocks be the same across origin-destination pairs (we cannot separately identify

these parameters). Mean fixed trade costs are allowed to vary across origin-destination pairs and can be

correlated with demand shocks within destinations. In line with these assumptions, we let µϕ,i , µα, µ f ,i j

denote log averages of productivity, demand shocks, and fixed trade costs for firms from origin i selling to

destination j . In turn, we allow the dispersion of log productivity, log demand shocks and log fixed trade

costs to differ across origins, but assume that – for a given origin – the dispersion of log demand shocks

and log fixed trade costs do not vary across destinations. Thus, we let σ2
ϕ,i , σ2

α,i , σ2
f ,i ,σα f ,i denote the

variance of log productivity, demand shocks, fixed trade cost and covariance between demand shocks

and fixed trade costs for a firm from i . To further clarify these assumptions, it is useful to consider the

case of firms from i with only two destinations labeled 1 and 2.27 The joint distribution of productivity,

26Eaton et al. (2011) also allow for lognormally distributed fixed cost and demand shocks, but retain the Pareto assumption
for productivity, and so, as explained in Online Appendix G, the behaviour of the intensive margin is the same as in the Melitz-
Pareto model. Nigai (2017) also combines Pareto with lognormal, but assuming that productivity is lognormal for most of the
distribution and then becomes Pareto in the right tail. We used Nigai’s Matblab code on our data to estimate the point of
truncation (percentile) where the lognormal ends and the Pareto begins: for 75% of country pairs with more than 100 exporters
the truncation point occurs after the 99th percentile and for the median country pair the truncation point is at the 99.9th
percentile. In light of these results, in the rest of the paper we consider a fully lognormal distribution for productivity.

27The general formulation of the joint probability distribution is reported in Online Appendix I.
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demand shocks, and fixed trade costs in this case would be



lnϕ

lnα1

lnα2

ln f1

ln f2


∼N





µϕ,i

µα

µα

µ f ,i 1

µ f ,i 2


,



σ2
ϕ,i 0 0 0 0

0 σ2
α,i 0 σα f ,i 0

0 0 σ2
α,i 0 σα f ,i

0 σα f ,i 0 σ2
f ,i 0

0 0 σα f ,i 0 σ2
f ,i




. (12)

Without risk of confusion, we change notation in this section and use Xi ≡ (Xi 1, ..., Xi J ) to denote the

random variable representing log sales of a firm from i in each of the J destinations, with xi ≡ (xi 1, ..., xi J )

being a realization of Xi , and with gXi (xi ) being the associated probability density function. According

to the model, a firm does not export to destination j if it has a large fixed trade cost draw f j relative to

its productivity and its demand shock for that destination. Let Zi j ≡ lnDi j + lnα j + (σ−1)lnϕ be sales

in destination j by a firm from i with productivity ϕ and demand shock α j . This is a latent variable that

we observe only if a firm actually exports,

Xi j =


Zi j

;

if lnσ+ ln fi j ≤ Zi j

otherwise
,

with Zi ≡ (Zi 1, ..., Zi J ) distributed according to



Zi 1

...

Zi J


∼N





di 1

di J


,



σ̄2
ϕ,i +σ2

α,i · · · σ̄2
ϕ,i

...
. . .

...

σ̄2
ϕ,i · · · σ̄2

ϕ,i +σ2
α,i




, (13)

where di j ≡ lnDi j +µα+ (σ−1)µϕ,i and σ̄ϕ,i ≡ (σ−1)σϕ,i .

4.2. Estimation Approach

Using firm-level data from the EDD and China, we can estimate the parameters in (13) as well as mean

log fixed trade costs (up to a constant) and their dispersion using maximum likelihood methods. Online

Appendix J shows how to derive the density function gXi 1,..,Xi J (x1i , ..., xi J ) for the case when we observe

sales to J destinations. We simplify the analysis by considering only data for 15 destinations (USA, Ger-

many, Japan, France and the 11 largest destinations by export value for each origin), which we label
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j = 1, ...,15 for year 2007 for each of 39 origins. We compute gXi 1,...,Xi J (x1i , ..., xi J ) for each observation

in our dataset (which is a realization of
{

Xi 1, ..., Xi J
}

that we observe). Since all random variables are

independent across firms, we can compute the log-likelihood function as a sum of log-densities,

lnL
(
Θi |

{
xi 1 (ki ) , ..., xi J (ki )

}
i ,ki

)
=

Ñi∑
ki=1

ln
[

g(Xi 1,...,Xi J )
(
xi 1 (ki ) , ..., xi J (ki )

)]
, (14)

where Ñi is the number of firms from i that sell to either of the 15 destinations we consider and ki is

an index for a particular observation in our dataset (for origin i it takes values in 1, ..., Ni ) and Θi is an

origin-specific vector of parameters that we want to estimate,

Θi =
{{

di j , µ̄ f ,i j
}

i , j , σ̄ϕ,i ,σα,i ,σ f ,i ,ρi

}
, (15)

where µ̄ f ,i j ≡ lnσ+µ f ,i j and ρ ≡ σα f ,i

σα,iσ f ,i
. As the likelihood is potentially not concave in θi and because

there are 34 parameters to estimate per origin, we rely on the estimation methodology proposed by Cher-

nozhukov and Hong (2003).28 We use the Metropolis-Hastings MCMC algorithm to construct a chain of

estimates Θ(n)
i for each origin country. Chernozhukov and Hong (2003) show that Θ̄ ≡ 1

N

∑N
n=1θ

(n)
i is a

consistent estimator of Θi , while the covariance matrix of Θ̄i is given by the variance of Θ(n)
i , so we use

this to construct confidence intervals for θ̄i . For each origin, we run 5 different chains that start at a dif-

ferent random starting value θ(i )
i . We then explore whether the different parameters in θi converged to

the same values across different chains and discuss the convergence of the chains in Online Appendix L.

Loosely speaking, identification works as follows. First, data on export flows and the number of ex-

porters across country pairs helps in identifying di j and µ̄ f ,i j . Second, the variance of firm sales within

each i j pair helps in identifying the sum of the dispersion parameters for productivity and demand

shocks, σ̄ϕ,i +σα,i . Third, the extent of correlation of firm sales from a particular origin across differ-

ent destinations helps in identifying σϕ,i separately from σα,i : the more correlated firm sales are across

destinations, the larger is σϕ,i relative to σα,i . Fourth, the correlation between fixed costs and demand

shocks can be inferred from the distribution of sales of small firms. Intuitively, if the correlation is neg-

ative, then a firm with a bad demand shock would likely draw a high fixed trade cost and thus would

not export, hence, we would not see many small firms in the data. Finally, to understand how σ f ,i is

28This methodology uses the likelihood function as a probability distribution of the set of parameters to be estimated, and
then via simulation finds the expectation of this distribution. This expectation is used as the estimator for the parameters. Note
that this is not maximum likelihood estimation, since we are not selecting the point where the density is maximized. A detailed
description of the estimation procedure can be found in Online Appendix K.
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identified, imagine for simplicity that there is only one destination. We then have

gXi 1 (xi 1) = gZi 1 (xi 1)×Pr
{
lnσ+ ln fi 1 ≤ xi 1|Zi 1 = xi 1

}
Ci

where Ci ≡ Pr{lnσ+ ln fi 1 ≤ Zi 1} and gZi 1 (.) is the probability density function of the latent sales Zi 1. This

implies that we can get the density of Xi 1 by applying weights Pr{lnσ+ln fi 1≤xi 1|Zi 1=xi 1}
Ci

to the density of Zi 1.

The parameter σ f ,i regulates how these weights behave with xi 1. In the extreme case in which σ f ,i = 0

then the weights are 0 for xi 1 ≤ µ fi 1 and 1/C for xi 1 > µ fi 1 , while in the other extreme with σ f ,i =∞ the

weights are all equal to 1. For intermediate cases the density of Xi 1 will be somewhere in the middle,

with the left tail becoming fatter and the right tail becoming thinner as σ f ,i increases. This suggests that

we can identify σ f ,i from the shape of the density of sales.

We will use the results of the estimation to conduct exercises similar to those in the previous sections.

First, we will compute the IME for all firms and for each percentile using the estimated model. Second,

after removing origin and destination fixed effects, we will compute the correlation across the estimated

values of di j and µ̄ f ,i j , and between them and distance.

4.3. Estimation Results

To estimate the parameters of the full Melitz-lognormal model we use firm-level data from the EDD

and China for year 2007 for 37 origins (of 39 origins possible 2 were dropped due to convergence issues

discussed in the Online Appendix L).29 We use σ= 5 based on the estimates of Bas et al. (2017).

Figure 4 reveals the goodness of fit of the estimated model relative to the data. Panel a plots the

density function for standardized firm-level log sales pooled across multiple origins and destinations.30

The model generates a distribution that closely fits the one in the data. We next look at deviations from

the strict hierarchy of firms sales across destinations (for each origin) in the data and in the estimated

model. If there were no demand and fixed cost shocks across firms, then all firms from a given origin

that export to less popular destinations would also export to the most popular destination. The share of

firms that only sell in the less popular destinations is then a measure of the extent to which this strict

hierarchy predicted by the simplest model is violated. Panel B shows that the share predicted by the

estimated model is quite close to the one in the data. Finally, for each origin and any two destinations

among the three most popular ones, Panel C shows the correlation in export value across all firms that

sell in those two destinations. The estimated model mostly implies a positive correlation driven by firm-

level productivity shocks, while in the data this correlation exhibits more dispersion.

Table 5 shows the estimates of the variance-covariance parameters (σ̄ϕ,i ,σα,i ,σ f ,i ,ρi ). The median

29For computational reasons, for China we considered only a random sample consisting of 5% of exporters.
30Standardized firm-level log sales for each origin-destination cell subtract the mean and divide by the standard deviation.
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estimated values for σ̄ϕ,i and σα,i across 37 origins are 3.18 and 2.67, respectively, and for σ f ,i and ρi

are 2.39 and 0.50. Even though the variance-covariance parameters were precisely estimated for each

of the origins, the parameters vary quite a bit across different origins.31 In general, there is a positive

correlation between demand and fixed costs shocks, but some origins exhibit a negative correlation.

Table 6 and Panel D of Figure 4 show the implications of the estimated model for the IME. We com-

pute the IME implied by the estimated model by drawing one million firms for each origin (this implies

one million latent log sales and log fixed costs for each destination), computing average sales (taking into

account selection), and then multiplying average sales by Ni j in the data to compute total exports.32 The

IME implied by the model is 0.63. This is actually higher than our preferred IME estimate of 0.4 in Section

2, but the gap comes in large part from the different sample of origin-destination pairs used here. Using

the same sample of 37 origins and 4 destinations for year 2007 we estimate an IME of 0.67 (with a stan-

dard error of 0.03) that is statistically indistinguishable from the one implied by our estimated lognormal

model.33 The associated IME for each percentile is plotted in Panel D – the pattern of the IME across

percentiles is remarkably close to what we see in the data.

Table 7 shows the elasticity of estimated variable and fixed trade costs with respect to distance (con-

trolling for origin and destination fixed effects). Now both types of trade costs are strongly increasing in

distance. Surprisingly, however, we still get a negative correlation between fixed and variable trade costs.

Overall, our estimated full Melitz-lognormal model does a very good job in fitting the EDD data and

in solving the puzzles associated with the Pareto model. The lognormal model generates an IME that is

close to the one we see in the EDD and implies fixed trade costs that increase with distance. The implied

pattern for the IME across different percentiles is also very similar to what we see in the data.

We also estimated the full model with Pareto-distributed productivity with the CDF given by Pr
[
ϕi ≤ϕ

]=
1−

(
ϕ
bi

)−θi
, ∀ϕi ≥ bi . This model is similar to Eaton et al. (2011) without the requirement that bi → 0. To

have finite price indices, θi
σ−1 > 1 should hold, and thus we imposed the restriction θi

σ−1 ∈ [1.05,∞].34 The

rest of the model is similar to the Melitz-lognormal model in having lognormally-distributed demand

shocks and fixed costs. We recomputed the IME implied by the estimated model, correlations of trade

costs with distance, as well as goodness of fit measures, in the same way as for the full Melitz-lognormal

model. The Melitz-Pareto model does a good job in several respects: it fits the standardized distribution

of sales, it generates similar patterns of hierarchy and correlation of firm sales across destinations as the

Melitz-lognormal model (Figure 5), it implies an IME that is close to the one in the data (Table 6), and

it yields positive correlations between trade costs and distance (Table 7). The estimated Melitz-Pareto

31The estimates and confidence bands for each of the parameters are reported in Online Appendix L.
32We pick one million as a numerical approximation to the case with a continuum of firms.
33The confidence interval in Table 6 comes from 1,000 random realizations of the parameters in our Markov chains.
34The unconstrained model yields very similar results, see Online Appendix M.
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model cannot, however, reproduce the upward-sloping IME across percentiles that we see in the data.

Panel D of Figure 5 shows that it implies a downward-sloping pattern of IME across percentiles, in con-

trast to the upward-sloping pattern in the data. Furthermore, without bi → 0, the Melitz-Pareto model

loses the tractability that gives rise to the explicit aggregate expressions in Eaton et al. (2011).

5. Counterfactual Analysis

In this section we study whether the counterfactual implications of the Melitz-lognormal model esti-

mated in the previous section differ from those of the standard Melitz-Pareto model. We start by present-

ing an extension of the “exact hat algebra” approach popularized by Dekle et al. (2008) to accommodate

any distribution of productivity, demand, and fixed cost shocks in the Melitz model. We then use this ap-

proach to quantify how trade flows and welfare respond to changes in trade costs in the Melitz-lognormal

model, and compare these responses to those in the standard Melitz-Pareto model.

To conduct counterfactual analysis, we need to close the model. We do so in standard fashion by

assuming that labor is the only factor of production, with wage wi and perfectly inelastic labor supply Li

in country i , by assuming that entry costs are in terms of labor, and that fixed exporting costs are in terms

of labor of the exporting country. To make the model be perfectly consistent with the data, we allow

for trade imbalances via exogenous international transfers, as in Dekle et al. (2008). Formally, letting

Xi = ∑
l Xl i denote total sales by country i and Yi = ∑

j Xi j denote total expenditure, trade imbalances

are equal to international transfers ∆i – that is, ∆i = Xi −Yi .

5.1. Exact Hat Algebra in the Generalized Melitz Model

Here we show how to extend the “exact hat algebra” for counterfactual analysis in Dekle et al. (2008) to

the Melitz model with a general productivity distribution (not necessarily lognormal) and allowing for

firm-level demand and fixed-cost shocks.

We start by introducing some notation. Let ϕ̃i j ≡ (σ−1)(lnϕi −µϕ,i )+ lnα−µα and f̃i j ≡ ln fi j −µ f ,i j

be mean-adjusted productivity and fixed costs, respectively, and let hi j be an endogenous cutoff such

that firms from i serve market j if and only if f̃i j − ϕ̃i j ≤ hi j . The price index in market j is then

P 1−σ
j =∑

i
P 1−σ

i j , (16)

with

P 1−σ
i j = Ni (σ̄wiτi j )1−σe(σ−1)µϕ,i+µα

∫ ∞

−∞
eϕ̃

∫ hi j+ϕ̃

−∞
gi j (ϕ̃, f̃ )d f̃ dϕ̃, (17)
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where gi j is the joint PDF of f̃i j and ϕ̃i j , trade shares are

λi j =
P 1−σ

i j

P 1−σ
j

, (18)

and the share of firms from origin i that sell in destination j is given by

ni j ≡ Ni j /Ni =
∫ ∞

−∞

∫ hi j+ϕ̃

−∞
gi j (ϕ̃, f̃ )d f̃ dϕ̃. (19)

In equilibrium, the cutoff variable hi j must be such that log profits derived in market j by a firm from

i with productivity ϕ̃i j and fixed cost f̃i j be equal to hi j + ϕ̃i j − f̃i j . Thus, hi j must satisfy:

hi j = ln

(
(σ̄wiτi j )1−σPσ−1

j X j

σwi

)
+ (σ−1)µϕ,i +µα−µ f ,i j . (20)

In turn, free entry implies that profits net of fixed costs of exporting are equal to entry costs. As shown in

Online Appendix I, this can be written as

σF e wi Ni =
∑

j
λi j X j

(
1−

∫ ∞
−∞

∫ hi j+ϕ̃
−∞ e f̃ gi j (ϕ̃, f̃ )d f̃ dϕ̃

ehi j
∫ ∞
−∞ eϕ̃

∫ hi j+ϕ̃
−∞ gi j (ϕ̃, f̃ )d f̃ dϕ̃

)
. (21)

An equilibrium is defined as variables {hi j ,λi j ,Pi j } and {X j ,P j , wi } such that equations (16) - (21)

are satisfied for all i , j , and in addition for all i

wi Li =
∑

j
λi j X j (22)

X j = w j L j +∆ j . (23)

We now consider the analogous system of equations in hat changes rather than in levels, with stan-

dard hat notation x̂ = x ′/x, where we use primes to denote counterfactual values. To quantify the effect

of changes in trade costs and trade imbalances, we take {τ̂i j } and {∆̂ j } as exogenous and solve for hat

changes in endogenous variables, {ĥi j , λ̂i j , P̂i j } and {X̂ j , P̂ j , ŵi }, given parameter σ, functions {gi j }, and

data {λi j ,hi j } and {X j ,Yi }. The corresponding system of equations is relegated to Online Appendix I. It

is important to note that, in contrast to the hat-algebra in the Melitz-Pareto model, in the more general

case considered here we also need data on ni j so that we can compute the implied hi j . And of course,

instead of simply knowing the Pareto shape parameter (or trade elasticity), here we need to know the

functions {gi j } for all i j pairs.
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5.2. Counterfactual Analysis in the Estimated Full Melitz-Lognormal Model

For our counterfactual analysis we need a set of countries for which we have {X j ,Yi } as well as {λi j ,hi j }

and {λi j ,hi j } for all i and j in that set. Since we assume that the variances of ϕi and fi j differ by origin

but not by destination (see Section 4), then gi j = gi for all i and j . We have estimated gi for a set of 37

EDD countries and we can infer the implied Ni for all those countries, so we can include any subset of

those countries in our analysis.35 We construct hi j using data for Ni , Ni j and equation (19). Finally, we

also need Xi j and Ni j for i = j . Following the approach proposed by Ossa (2015), we construct Xi i as

manufacturing value-added in country i from the World Development Indicators divided by 0.25, which

is close to the average share of manufacturing value-added in gross production from the World Input-

Output Database (WIOD) for the set of covered EDD countries in 2007. We set Ni i = Ni , which would be

true if there are no fixed costs for domestic sales.

We conduct our counterfactual analysis for a world composed of the 12 Latin American countries

and China, for which we have estimated the full Melitz-lognormal model.36 We do not consider the

whole EDD dataset for computational reasons. Some of the country pairs in the whole EDD dataset

trade very little and this would make our welfare calculations imprecise (since we need to use numerical

approximation to compute some of the integrals).

To compare the counterfactual implications of the full Melitz-lognormal model with those of the

Melitz-Pareto model, we need a value for the Pareto shape parameter, θ. Following ACR, we set this pa-

rameter equal to an estimate of the trade elasticity, which we obtain as follows. Our estimated parame-

ters ln d̂i j are a sum of origin and destination specific components, a constant, and the term (1−σ) lnτi j .

Hence, we can combine these estimated values of ln d̂i j with actual trade flows Xi j to estimate the trade

elasticity from the following regression:

ln Xi j = γo
i +γd

j −
β

σ−1
ln d̂i j +ζi j . (24)

Using again σ = 5, this yields an estimate of the trade elasticity equal to β̂ = 4.2. In the Melitz-Pareto

model, this implies that θ = 4.2.

We consider four different trade costs shocks: 1%, 5%, 10%, and 25% uniform reductions in interna-

tional trade costs – formally, τ̂i j = τ̂ ∈ {0.99,0.95,0.9,0.75} if i 6= j , while τ̂i i = 1. For each trade cost shock

τ̂ we compute the counterfactual implications in both the Melitz-lognormal and Melitz-Pareto models.

We show the results of this exercise in Figures 6 and 7. We use Ŵ m
i ≡ ŵm

i /P̂ m
i and X̂ m

i j to denote the

35To see how we get Ni , note that the estimated model provides us with a probability that a random firm from some origin is
selling to at least one of the 15 destinations we consider. As we observe the total number of exporters to those destinations, we
can infer the total number of firms from which they are drawn. We provide details on this procedure in Online Appendix J.

36We implicitly assigns trade flows between these countries and countries outside of this group to domestic transactions.
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hat changes in welfare and trade flows for the Melitz-lognormal model (m = LN ) and the Melitz-Pareto

model (m = P ). Figure 6 plots Ŵ LN
i − 1 (horizontal axis) against Ŵ P

i − 1 (vertical axis) in response to

the four different trade costs shocks. It is evident that both models yield very similar results. As is well

known from Arkolakis et al. (2012) and Melitz and Redding (2015), the welfare effects of trade liberaliza-

tion depend critically on the behavior of the trade elasticity, which is qualitatively different across the

two models: while the trade elasticity in the Melitz-Pareto model is common across country pairs and

invariant to shocks, this is no longer true in the Melitz-lognormal. We can use our estimated gi and ni j

to compute the local trade elasticity in the Melitz-lognormal model for each country pair using the for-

mula derived by Bas et al. (2017). The resulting elasticity ranges from 4 to 6.9 with a standard deviation

of 0.59 and the higher values occurring for country pairs with a low ni j , as shown in Online Appendix

N. However, this variation in trade elasticities across country pairs matters little for the gains from a

uniform decline in trade costs, because the larger gains obtained with partners for which the trade elas-

ticity is higher are compensated by the lower gains with partners for which the trade elasticity is lower.

Loosely speaking, for a uniform trade cost shock, what matters is the average trade elasticity, and so the

Melitz-Pareto model yields a good approximation for the gains from uniform trade liberalization.

Even though gains from trade liberalization are similar in the two models, the Melitz-Pareto and the

Melitz-lognormal models differ in their implications for the counterfactual changes in bilateral trade

flows. Figure 7 plots the ratio of the difference between the counterfactual changes in trade flows in the

Melitz-lognormal model (X̂ LN
i j ) and in the Melitz-Pareto model (X̂ P

i j ) against the trade elasticity implied

by the Melitz-lognormal model. We can see that Melitz-Pareto model can significantly over- or under-

predict changes in trade flows depending on the actual trade elasticity. Naturally, a higher trade elasticity

in the Melitz-lognormal model leads to larger changes in trade flows relative to the Melitz-Pareto model.

What happens if trade liberalization is asymmetric? We consider an extreme case in which, for each

origin, trade costs decrease only for exports to the destination with the largest number of exporters –

formally, we consider 13 separate shocks, one for each Latin American country and China as an origin,

with the shock for origin i being that τ̂i j = 0.25 if j = argmaxl Ni l and τ̂i j = 1 otherwise. Since the trade

elasticity should be low for the affected pairs, we expect the Melitz-lognormal model to deliver smaller

welfare gains than the Melitz-Pareto model. This is confirmed in Figure 8. However, the differences in

welfare gains between the two models are small. Again, as in the analysis with symmetric trade cost

declines, we see bigger differences across models in the effects on trade flows, as shown by Figure 9.

Finally, it is interesting to compare our results to those in Melitz and Redding (2015). They find that

the ACR ex-post formula for welfare evaluation does a poor job of capturing the true welfare changes

from a decline in trade costs in a symmetric Melitz model with a truncated Pareto distribution. In con-

trast, we find that the ACR formula does a good job in approximating welfare changes in the estimated



24 FERNANDES-KLENOW-MELESHCHUK-PIEROLA-RODRíGUEZ-CLARE

Melitz-lognormal model. The difference comes from how much the trade elasticity varies in the two

models: whereas it falls from 15 to 5 as trade costs decline in the Melitz-Redding exercise, the trade elas-

ticity shows little variation in our Melitz-lognormal model. In particular, three quarters of bilateral trade

elasticities lie between 4 and 4.8, and they cannot fall below σ−1 = 4. We discuss this further in Online

Appendix O, where we show that we can reproduce the Melitz and Redding (2015) results but only by

setting parameters to values far from those we estimate.

6. Conclusion

The canonical Melitz model of trade with Pareto-distributed firm productivity has a stark prediction:

conditional on the fixed costs of exporting, all variation in exports across partners should be due to the

number of exporting firms (the extensive margin) and there should be no variation along the intensive

margin (exports per exporting firm). We use the World Bank’s Exporter Dynamics Database plus China to

test this prediction. Compared to existing studies, this data allows us to look for systematic variation in

the intensive and extensive margins of trade — allowing for year, origin, and destination components of

fixed trading costs. We find that at least 40 percent of the variation in exports occurs along the intensive

margin. That is, when exports from a given origin to a given destination are high, exports per firm are

responsible for, on average, at least 40 percent of the high exports. When we look at average exports by

percentile of exporting firms (rather than average exports per firm), we find the intensive margin is more

important the higher the size percentile.

Although variation in fixed trade costs across country pairs can make the Melitz-Pareto model fit the

intensive margin in the data, such fixed trade costs would need to be negatively correlated with distance.

Moreover, variation in fixed trade costs does not reproduce the pattern of a steadily rising intensive mar-

gin across exporter size percentiles. Allowing firms to export multiple products or taking into account

granularity does not reverse these implications.

In contrast, moving away from a Pareto distribution and assuming that the productivity distribution

is lognormal resolves the puzzles. Specifically, we estimate a Melitz model with lognormally distributed

firm productivity and idiosyncratic firm-destination demand shifters and fixed trade costs using likeli-

hood methods on the EDD firm-level data. Our estimated Melitz-lognormal model is consistent with the

positive intensive margin overall and with the intensive margin rising across exporter size percentiles.

This estimated model also implies fixed trade costs that increase with distance.

Since the trade elasticity is no longer a constant in the full Melitz-lognormal model, one would expect

from the analysis in Arkolakis et al. (2012) that the welfare effects of a trade cost reduction would be

different from those in the Melitz-Pareto model (see Melitz and Redding, 2015). Extending the exact
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hat algebra approach popularized by Dekle et al. (2008) to our estimated full Melitz-lognormal model,

however, we find that the Melitz-Pareto model provides a remarkably good approximation for the welfare

effects of trade liberalization.

Looking ahead, moving from Pareto to lognormal firm productivity may matter more when taking

into account how domestic firms can learn from firms selling or producing in the domestic market. The

size of this dynamic learning gain from trade should depend on whether the distribution of firm pro-

ductivity is Pareto versus lognormal, as it interacts with how trade alters the distribution of producer

and seller productivity. For example, trade liberalization induces more entry of marginal exporters un-

der Pareto than under lognormal — as illustrated by the unchanging exports per exporter under Pareto

(zero intensive margin elasticity, unit extensive margin elasticity) versus the sizable intensive margin and

weaker extensive margin under lognormal.
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Tables and Figures

Table 1: Core Sample of EDD countries+China, years firm-level data is available

ISO3 Country name 1st year Last year ISO3 Country name 1st year Last year

ALB Albania 2004 2012 KHM Cambodia 2003 2009

BFA Burkina Faso 2005 2012 LAO Laos 2006 2010

BGD Bangladesh 2005 2013 LBN Lebanon 2008 2012

BGR Bulgaria 2003 2006 MAR Morocco 2003 2013

BOL Bolivia 2006 2012 MDG Madagascar 2007 2012

BWA Botswana 2003 2013 MEX Mexico 2003 2012

CHL Chile 2003 2012 MKD Macedonia 2003 2010

CHN China 2003 2008 MMR Myanmar 2011 2013

CIV Cote d’Ivoire 2009 2012 MUS Mauritius 2003 2012

CMR Cameroon 2003 2013 MWI Malawi 2009 2012

COL Colombia 2007 2013 NIC Nicaragua 2003 2013

CRI Costa Rica 2003 2012 NPL Nepal 2011 2013

DOM Dominican Republic 2003 2013 PAK Pakistan 2003 2010

ECU Ecuador 2003 2013 PRY Paraguay 2007 2012

EGY Egypt 2006 2012 PER Peru 2003 2013

ETH Ethiopia 2008 2012 QOS Kosovo 2011 2013

GAB Gabon 2003 2008 ROU Romania 2005 2011

GEO Georgia 2003 2012 RWA Rwanda 2003 2012

GIN Guinea 2009 2012 THA Thailand 2012 2013

GTM Guatemala 2005 2013 TZA Tanzania 2003 2012

HRV Croatia 2007 2012 UGA Uganda * 2003 2010

IRN Iran 2006 2010 URY Uruguay 2003 2012

JOR Jordan 2003 2012 YEM Yemen 2008 2012

KEN Kenya 2006 2013 ZAF South Africa 2003 2012

KGZ Krygyztan 2006 2012 ZMB Zambia 2003 2011

* Uganda does not have data for 2006
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Table 2: IME regressions, core sample

Coefficient from ln xi j on ln Xi j

(1) (2) (3)

Panel a: country pairs with Ni j ≥ 100

IM elasticity 0.438*** 0.459*** 0.400***

Standard error [0.0058] [0.0041] [0.0055]

R2 0.55 0.74 0.85

Variation in ln Xi j explained by FE,% 0.01 0.20 0.59

Observations 7,781 7,768 7,324

Panel b: all country pairs

IM elasticity 0.503*** 0.530*** 0.579***

Standard error [0.0018] [0.0017] [0.0023]

R2 0.77 0.81 0.85

Variation in ln Xi j explained by FE, % 0.00 0.20 0.50

Observations 47,129 47,129 47,037

Year FE Yes

Origin × year FE Yes Yes

Destination × year FE Yes

Note: The table presents the estimated coefficients of the regression of log
average exports per firm on log total exports. The data are aggregated at
the origin-destination-year level for a set of origin-years listed in Table 1.
Panel a) represents the regression on the sample of country-pairs with at
least 100 exporters. Panel b) represents the regression on the full sample.
Robust standard errors are reported in brackets. ∗, ∗∗, and ∗∗∗ represent
the 5%, 1%, and 0.1% significance levels, respectively.
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Table 3: Margins of trade and distance

Elasticity with respect to distance

xi j 0.128*** -0.276***

Standard error [0.0158] [0.0164]

Ni j -0.419*** -1.012***

Standard error [0.0141] [0.0152]

Observations 7,437 7,019

xp
i j 0.302*** -0.0644***

Standard error [0.0165] [0.0172]

mi j -0.174*** -0.212***

Standard error [0.0063] [0.006]

Observations 7,437 7,019

Origin × year FE Yes Yes

Destination × year FE Yes

Note: the table presents the estimated coefficients of the regression of log
average exports per firm, number of firms, average exports per product per
firm (total exports divided by the number of firm-HS6 product observations
with positive exports from origin i to destination j in a given year), and num-
ber of products on log distance between origins and destinations. The data
are aggregated at the origin-destination-year level for a set of origin-years
listed in Table 1. Population-weighted distance between origins and desti-
nations is taken from Mayer and Zignago (2011). The sample is restricted
to the origin-destination pairs with at least 100 exporters. Egypt is not in-
cluded in the sample since its data does not include HS 6-digit product level
disaggregation. Robust standard errors are reported in brackets. ∗, ∗∗, and
∗∗∗ represent the 5%, 1%, and 0.1% significance levels, respectively.
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Table 4: Trade costs and distance

ln F̃i j ln τ̃i j ln f̃i j

Panel a: Melitz-Pareto model

lndi sti j -0.280*** 0.272*** -0.071***

Standard error [0.0140] [0.0046] [0.0146]

Observations 7,320 7,320 7,320

Panel b: Melitz-lognormal model

lndi st 0.156*** 0.299***

Standard error [0.0155] [0.0051]

Observations 7738 7738

Note: Panel a) of the table presents the estimated coefficients of the regression of the implied log
fixed firm-level trade costs (column 1), log variable trade costs (column 2), and log fixed product-level
trade costs (column 3) on log distance between origins and destinations. We calculate trade costs by
inverting equations (10) and (11) with θ = 5. The data are aggregated at the origin-destination-year
level for a set of origin-years listed in Table 1. Population-weighted distance between origins and
destinations is taken from Mayer and Zignago (2011). Panel b) of the table presents the estimated
coefficients of the regression of the log fixed and variable trade costs implied by the Melitz model
with lognormal distribution of productivity as discussed in Section 4.1. on log distance. The sample
is restricted to the origin-destination pairs with at least 100 exporters. Robust standard errors are
reported in brackets. ∗, ∗∗, and ∗∗∗ represent the 5%, 1%, and 0.1% significance levels, respectively.

Table 5: Estimates of dispersion, full Melitz-lognormal model

mean median min max

σ̄ϕ 3.32 3.18 0.93 5.82

σα 2.72 2.67 1.94 3.64

σ f 2.39 2.39 1.64 3.11

ρ 0.47 0.50 -0.33 0.90

Note: The table presents the estimates of the full Melitz-lognormal model.
The estimation procedure is discussed in Section 4.1. The sample includes
37 origin countries for which our estimates converged and 15 destinations
per origin. The mean, median, min, and max statistics are calculated across
origins.
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Table 6: Implied IME in full Melitz-Pareto models

IME 95% CI

Data 0.67 [0.61, 0.73]

Full Melitz-lognormal model 0.63 [0.59, 0.67]

Melitz-Pareto model, constrained 0.63 [0.57, 0.70]

Note: The table presents the coefficient from the regression of log average
exports per firm on log total exports with origin and destination fixed ef-
fects implied by the simulated full Melitz-lognormal model, Melitz-Pareto
constrained model. The sample includes 37 origins and 4 main destinations
(USA, Germany, France, and Japan) in 2007. The IME in the data is estimated
for the same sample. The point estimates and 95% confidence intervals are
calculated based on 1,000 simulations based on random parameter draws
from the generated Monte-Carlo Markov chain.

Table 7: Implied trade costs in simulated models

Estimate 95% CI Estimate 95% CI

Full Melitz lognormal
Melitz-Pareto
constrained

cor r
(
F̃i j , τ̃i j

)
-0.31 [-0.45, -0.1] -0.30 [-0.42, -0.19]

Distance elasticity:

Fixed costs 0.31 [0.18, 0.41] 0.50 [0.37, 0.65]

Variable costs 0.34 [0.30, 0.37] 0.29 [0.25, 0.34]

Note: The table presents the coefficients from the regression of log fixed and variable trade costs on distance,
origin, and destination fixed effects implied by the simulated full Melitz-lognormal and Melitz-Pareto constrained
models. The sample includes 37 origins and 4 main destinations (USA, Germany, France, and Japan) in 2007.
The point estimates and 95% confidence intervals are calculated based on 1,000 simulations based on random
parameter draws from the generated Monte-Carlo Markov chain.
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Figure 1: Intensive and Extensive margins of exporting

Panel A: Average size of exporters and total exports Panel B: Number of exporters and total exports

Source: Exporter Dynamics Database, extended sample. The x-axis represents log total exports at the origin-destination-year level

demeaned by origin-year, and destination-year fixed effects. Only origin-destination pairs with more than 100 exporters included.

The dots represent the raw measures. The line is the slope predicted by the Melitz-Pareto model.

Figure 2: IME for each percentile, data

Source: Exporter Dynamics Database, core sample of countries. The x-axis represents percentiles
of the average exporter size distribution. Each dot represents the coefficient from the regression
of log average exports per firm in an exporter size percentile on log total exports. The data is
demeaned by origin-year and destination-year fixed effects.
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Figure 3: IME for each percentile, lognormal

Source: Exporter Dynamics Database. The darker solid line corresponds to IME for each per-
centile estimated using EDD and four main destinations: France, Germany, Japan and the U.S..
Dashed lines indicate 95% confidence intervals. The lighter solid line is IME for each percentile
implied by the model with lognormal distribution of productivity, σ̄ϕ = 4.02 (our estimate) and
σ = 5 from Bas et al. (2017). The level of bilateral fixed trade costs was chosen to match overall
IME in the data. The total number of firms was imputed from Bento and Restuccia (2017).



THE INTENSIVE MARGIN IN TRADE 35

Figure 4: Full Melitz-lognormal model, goodness of fit

Panel A: PDF of log sales
Panel B: Share of firms selling to

destination X but not Y

Panel C: Correlation between log exports
to top destinations

Panel D: IME for each percentile

Source: Exporter Dynamics Database and authors’ calculations. Panel A: The black line corresponds to the standardized log sales

(demeaned, divided by standard deviation) pooled across different origin-destination cells. The blue line corresponds to the stan-

dardized log sales pooled across different cells in the model. Panel B: Each point corresponds to the share of firms exporting only

to less popular markets in the data (horizontal axis) and according to the estimated model (vertical axis) for each origin. Panel C:

each point corresponds for each origin and any two destinations among the three most popular ones, the correlation in export

value across all firms that sell in those two destinations in the data (horizontal axis) and according to the estimated model (vertical

axis). Panel D: the x-axis represent percentiles; the blue solid line represents coefficient from the regression of log average exports

in each percentile on log total exports in the model; the dashed red lines represent 95% confidence interval; the black solid line

represents coefficient from the regression of log average exports in each percentile on log total exports in the data; the dashed black

lines represent the 95% confidence interval.
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Figure 5: Melitz-Pareto model (constrained), goodness of fit

Panel A: PDF of log sales
Panel B: Share of firms selling to

destination X but not Y

Panel C: Correlation between log exports
to top destinations

Panel D: IME for each percentile

Source: Exporter Dynamics Database and authors’ calculations. Panel A: The black line corresponds to the standardized log sales

(demeaned, divided by standard deviation) pooled across different origin-destination cells. The blue line corresponds to the stan-

dardized log sales pooled across different cells in the model. Panel B: Each point corresponds to the share of firms exporting only

to less popular markets in the data (horizontal axis) and according to the estimated model (vertical axis) for each origin. Panel C:

each point corresponds for each origin and any two destinations among the three most popular ones, the correlation in export

value across all firms that sell in those two destinations in the data (horizontal axis) and according to the estimated model (vertical

axis). Panel D: the x-axis represent percentiles; the blue solid line represents coefficient from the regression of log average exports

in each percentile on log total exports in the model; the dashed red lines represent the 95% confidence interval; the black solid line

represents coefficient from the regression of log average exports in each percentile on log total exports in the data; the dashed black

lines represent the 95% confidence interval.
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Figure 6: Gains from trade liberalization

Note: The figure represents the change in welfare in response to a variable trade costs shock in the
full Melitz-lognormal model and the Melitz-Pareto model. To calculate welfare gains in the full
Melitz-lognormal model we used the parameter estimates from the Monte-Carlo Markov chain.
Section 5.1. describes the procedure to calculate gains from trade liberalization in the full Melitz-
lognormal model. We used the Dekle et al. (2008) ‘exact hat’ algebra to calculate changes in trade
shares in the Melitz-Pareto model and the Arkolakis et al. (2012) formula to calculate the gains
from trade libetalization. The x-axis represents gains in the full Melitz-lognormal model. The y-
axis represents gains in the Melitz-Pareto model. Each of the four panels reports the results for a
different change in trade costs (1%, 5%, 10%, 25%). In the Melitz-Pareto model when we use the
trade elasticity estimated from equation (24).
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Figure 7: Counterfactual changes in trade flows

Note: The figure represents the difference between changes in trade flows in the full Melitz-
lognormal model and the Melitz-Pareto model in response to a reduction of variable trade costs
on the vertical axis, and the trade elasticity implied by the full Melitz-lognormal model on the
horizontal axis. To calculate changes in trade flows in the full Melitz-lognormal model we used
parameter estimates from the Monte-Carlo Markov chain. Section 5.1. describes the procedure to
calculate changes in trade flows in the full Melitz-lognormal model.
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Figure 8: Gains from asymmetric trade liberalization

Note: the figure represents the change in welfare in response to a variable trade costs shock in
the full lognormal Melitz model and the Melitz-Pareto model. Each dot represents a change in
welfare in a given origin in response to a 25% decline in costs of exporting to its biggest market.
To calculate welfare gains in the full Melitz-lognormal model we used the parameter estimates
from the Monte-Carlo Markov chain. Section 5.1. describes the procedure to calculate gains from
trade liberalization in the full Melitz-lognormal model. We used the Dekle et al. (2008) ‘exact hat’
algebra to calculate changes in trade shares in the Melitz-Pareto model and the Arkolakis et al.
(2012) formula to calculate the gains from trade libetalization. The x-axis represents gains in the
full Melitz-lognormal model. The y-axis represents gains in the Melitz-Pareto model.
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Figure 9: Counterfactual changes in trade flows, asymmetric trade liberalization

Note: the figure represents changes in trade flows in response to a variable trade costs shock in
the full lognormal Melitz model and the Melitz-Pareto model. Each dot represents a change in
welfare in a given origin in response to a 25% decline in costs of exporting to its biggest market.
To calculate changes in trade flows in the full Melitz-lognormal model we used the parameter
estimates from the Monte-Carlo Markov chain. Section 5.1. describes the procedure to changes
in trade flows after trade liberalization in the full Melitz-lognormal model. We used the Dekle et
al. (2008) ‘exact hat’ algebra to calculate changes in trade shares in the Melitz-Pareto model. The
x-axis represents changes in trade flows in the full Melitz-lognormal model. The y-axis represents
changes in trade flows in the Melitz-Pareto model.


