Race and Economic Well-Being in the United States

Jean-Felix Brouillette, Charles I. Jones and Peter J. Klenow

October 26, 2020

Race and economic well-being

Large and persistent racial differences in economic outcomes in the U.S.:

- Earnings: Chetty, Hendren, Jones and Porter (2020)
- Mortality and morbidity: Case and Deaton (2015) and Chetty et al. (2016)

Studied separately, but likely correlated:

- How large is the racial gap in overall living standards?
- How has it changed over time?

Methodology

Build on the expected utility framework of Jones and Klenow (2016)

Construct a consumption-equivalent welfare statistic:

- Life expectancy
- Consumption
- Consumption inequality
- Leisure
- Leisure inequality

Preview

- Black welfare started at 49% of White welfare in 1984 and rose to 69% by 2018
 - Progress coming evenly from rising relative consumption and life expectancy
- COVID-19 mortality has reversed a decade's worth of progress

Theory

Expected utility for individual of race *i*:

$$U_i = \mathbb{E}\sum_{a=0}^{100} S_{ai} u\left(C_{ai}, L_{ai}\right)$$

where S_{ai} = survival rate, C_{ai} = consumption and L_{ai} = leisure.

Expected utility if consumption is multiplied by factor λ at each age:

$$U_{i}(\lambda) = \mathbb{E} \sum_{a=0}^{100} S_{ai} u\left(\lambda C_{ai}, L_{ai}\right).$$

Theory

How to adjust consumption of White Americans for them to be indifferent between living their lives in the conditions faced by Black Americans and their own?

 $U_{W}\left(\lambda_{EV}\right)=U_{B}\left(1\right)$

Analogously, how to adjust consumption of Black Americans for them to reach the same indifference point?

 $U_{W}\left(1\right)=U_{B}\left(1/\lambda_{CV}\right)$

Our consumption-equivalent welfare statistic averages λ_{EV} and λ_{CV}

Data

Welfare calculation requires data on mortality, consumption and leisure:

- Period: 1984 to 2018
- Groups: Black and White Americans
- Mortality: Centers for Disease Control and Prevention (CDC)
- Consumption: Consumer Expenditure Survey (CEX)
- Leisure: Current Population Survey (CPS)

CDC and CPS data go back as far as 1970, but annual CEX only starts in 1984

Consumer Expenditure Survey

- Rotating panel of 20,000 households, interviewed for up to four quarters
- We aggregate expenditures on hundreds of items
- Exclude health expenditures (double counting)
- Approximate the flow services of durable goods when possible
- Divide consumption evenly within households
- Re-scale to reflect real non-health NIPA consumption per capita each year

Per capita consumption by race

Consumption

Consumption age profile in 2018

Log consumption

Current Population Survey

- Over 60,000 households interviewed for up to 8 months
- Detailed information on employment, occupation and income
- Leisure = (5,840 hours worked in the year)/5,840
 - $\circ~$ 5,840 = 16 hours per day \times 365 days
- Divide hours worked equally among 25 to 64 year olds within households
 - Consistent with leisure gender gap found by Aguiar and Hurst (2007)

Leisure by race

Leisure

Leisure age profile in 2018

Leisure 1.00 0.95 0.90 0.85 0.80 Black 0.75 White 0.70 20 80 . 40 60 0 100 Age

13 / 30

Centers for Disease Control and Prevention (CDC)

- Universe of individual death records
- Detailed information on the deceased
- Population at risk: U.S. Census Bureau's intercensal population estimates
- Probability of surviving up to age *a*:

$$S_a = \prod_{s=0}^{a} (1 - M_s)$$
 where $M_s = D_s / P_s$

Life expectancy by race

Life expectancy

Life expectancy by race and gender

Life expectancy

Survival age profile in 2018

Survival rate

Assumptions and definitions

Assume additively separable flow utility:

$$u(C,L) = \overline{u} + \log(C) + v(L)$$
 where $v(L) = -\frac{\theta\epsilon}{1+\epsilon} \times (1-L)^{\frac{1+\epsilon}{\epsilon}}$

Define average sub-utility from consumption and leisure as:

$$\operatorname{AUC}_{i} \equiv \sum_{a} S_{aW} \mathbb{E} \left[\log \left(C_{ai} \right) \right] / \operatorname{LE}_{W} \text{ and } \operatorname{AUL}_{i} \equiv \sum_{a} S_{aW} \mathbb{E} \left[v \left(L_{ai} \right) \right] / \operatorname{LE}_{W}$$

Define sub-utility from average consumption and leisure as:

$$\operatorname{UAC}_{i} \equiv \log\left(\sum_{a} S_{aW} \mathbb{E}\left[C_{ai}\right] / \operatorname{LE}_{W}\right) \quad \text{and} \quad \operatorname{UAL}_{i} \equiv v\left(\sum_{a} S_{aW} \mathbb{E}\left[L_{ai}\right] / \operatorname{LE}_{W}\right)$$

Decomposition

$$log (\lambda_{CV}) = \sum_{a} (S_{aB} - S_{aW}) \mathbb{E} [u (C_{aB}, L_{aB})] / LE_{W}$$
Life expectancy
+ UAC_B - UAC_W Consumption
+ UAL_B - UAL_W Leisure
+ (AUC_B - UAC_B) - (AUC_W - UAC_W) Consumption inequality
+ (AUL_B - UAL_B) - (AUL_W - UAL_W) Leisure inequality

Calibration

Parameter	Symbol	Value	Source
Frisch elasticity	ϵ	1.00	Hall (2009) and Chetty et al. (2012)
Leisure utility weight	θ	14.2	Static first-order condition
Flow utility intercept	\overline{u}	8.01	VSL of \$7.4M in 2006 (EPA)

• Intercept: one year of life is worth 8 years of consumption in 2018

Black relative to White welfare

Welfare and income gap

Welfare and wealth gap

Welfare gap decomposition

Welfare gap decomposition

	$\log\left(\lambda\right)$	LE	С	$\sigma\left(C\right)$	L	$\sigma\left(L\right)$
2018	-0.37	-0.26	-0.17	0.02	0.03	0.00
2000	-0.61	-0.40	-0.27	0.01	0.04	0.01
1984	-0.71	-0.38	-0.40	-0.01	0.05	0.02

Welfare growth between 1984 and 2018

	Welfare	Income	LE	С	$\sigma(C)$	L	$\sigma\left(L\right)$
Black	3.35	2.40	1.12	7 2.4	8 -0.04	-0.15	-0.12
White	2.28	1.59	0.76	5 1.8	4 -0.12	-0.11	-0.08
Gap	1.06	0.80	0.42	1 0.6	5 0.08	-0.04	-0.04

COVID-19 welfare statistics

	Deaths per thousand	Age of victims	Years of life lost per victim	Group welfare loss (%)
Black	1.04	71.7	15.0	11.1
White	0.57	80.1	10.2	3.7

Note: As of October 24, 2020, the CDC reports a total of 212,328 COVID-19 deaths.

Welfare gap with COVID-19 mortality

- Black welfare started at 49% of White welfare in 1984 and rose to 69% by 2018
 - Progress coming evenly from rising relative life expectancy and consumption
- COVID-19 mortality has reversed a decade's worth of progress

Work in progress...

- Morbidity
- Unemployment
- Incarceration
- Gender
- Education
- Go back farther in time